HDMI Protocol Analyzer
VA-1809

User's Manual

Ver.2.0
HDMI Protocol Analyzer
UA=1809
User's Manual

2006.11
Ver.2.0

Contents

Foreword V
Safety precautions v
Concerning this unit v
Concerning the power cord v
Concerning foreign matter v
Concerning the power supply v
Concerning the LCD display V
Concerning impact vi
Concerning the installation and operation locations vi
Concerning what is packed with the unit vi
Chapter 1 Concerning the VA-1809 1
1.1 Introduction 1
1.2 Features and main functions 1
1.3 Concerning the programs 2
1.4 Concerning CompactFlash (CF) cards 3
1.4.1 Introduction 3
1.4.2 Types 3
1.4.3 Amount of data that can be registered 3
1.4.4 Storage locations of registered data 4
1.4.5 How to insert the CF card. 4
1.4.6 How to eject the CF cards 4
1.5 Parts and their functions 5
1.5.1 VA-1809 front panel 5
1.5.2 VA-1809 rear panel 7
1.5.3 VA-1809 on-screen display 8
1.5.4 Icons 9
Chapter 2 Connections with peripherals 11
2.1 Example of connections when using the VA-1809 as a receiver (monitor) 11
2.2 Example of connections when using the VA-1809 as a repeater 12
2.3 Connections for isolating the HDMI input sound for output 13
2.4 Example of connections when outputting LCD displays to an analog monitor 13
Chapter 3 Menu tree 15
3.1 ANALYZE menu 16
3.2 PROGRAM menu 17
3.3 SETUP menu 18
3.4 SAVE menu 19
Chapter 4 ANALYZE (measurement result display methods) 21
4.1 ANALYZE Common Function Keys 22
4.1.1 GUI/HEX 23
4.1.2 PROG INC/PROG DEC/DIRECT PROG CALL 24
4.1.3 Repeater/Receiver 24
4.1.4 DVI/HDMI 24
4.1.5 HDCP ON/OFF 24
4.1.6 CONNECTED EDID SET 24
4.2 Error reports 25
4.3 Video Timing 26
4.4 AVI InfoFrame 29
4.5 SPD InfoFrame 31
4.6 Audio InfoFrame 32
4.7 MPEG InfoFrame 34
4.8 ACP Packet 35
4.9 ISRC1 Packet 37
4.10 ISRC2 Packet 39
4.11 Channel Status Bit 40
4.12 Audio Timing 43
4.13 HDCP 44
4.13.1 HDCP Authentication Source -> VA-1809 44
4.13.2 HDCP Authentication VA-1809 -> Sink 45
4.13.3 HDCP Authentication Part 3 Source -> VA-1809 46
4.13.4 HDCP Authentication Part 3 VA-1809 -> Sink 47
4.13.5 HDCP Repeater Sequence Check 48
4.14 DDC Monitor 50
4.15 Compliance Test Item Check 53
4.16 CEC Analyzer 69
4.17 CEC Compliance Test Item Check 101
4.18 Other functions 130
4.18.1 Hot plug function 130
4.18.2 Log function. 130
Chapter 5 Simple setup 133
5.1 Setting the VA-1809's HDMI equipment performance using the internal programs with the default settings 133
5.1.1 Loading the programs 133
5.1.2 Internal programs with default settings 134
5.2 Connecting the signal source, and displaying the HDMI input images on the LCD screen 136
Chapter 6 Detailed setup 137
6.1 PROGRAM (HDMI equipment performance settings) 137
6.1.1 Creating programs and groups. 137
6.1.2 Executing programs (LOAD) 147
6.2 SETUP (DISPLAY SETUP) 149
6.3 SETUP (CONFIG SETUP) 151
6.3.1 Description of Function Keys Common to CONFIG SETUP 152
6.3.2 ANALYSIS \& LOG TRIGGER 154
6.3.3 ANALYSIS MODE 156
6.3.4 SPEAKER VOLUME 156
6.3.5 HOT PLUG MODE 157
6.3.6 EDID AUTO CHECKSUM 157
6.3.7 EDID DATA FILE TYPE 158
6.3.8 PHYSICAL ADDRESS FIX 158
6.3.9 EDID TIMING CHECK. 158
6.3.10 SPEAKER PLACEMENT SET 159
6.3.11 VIRTUAL REPEATER MODE 160
6.3.12 Setting the Communication Port 166
6.4 SETUP (Others) 167
6.4.1 VERSION INFO 167
6.4.2 INITIALIZE 168
6.5 SAVE 169
6.5.1 CONNECTED EDID 169
6.5.2 PROGRAM GROUP 171
6.5.3 ANALYSIS DATA 72
6.5.4 CONFIG DATA 173
Chapter 7 Error tables 175
7.1 ANALYSIS ERROR (displayed in red) tables 175
7.1.1 Video Timing 175
7.1.2 AVI InfoFrame 176
7.1.3 SPD InfoFrame 176
7.1.4 Audio InfoFrame 177
7.1.5 MPEG InfoFrame 178
7.1.6 ACP Packet 78
7.1.7 ISRC1 Packet. 178
7.1.8 ISRC2 Packet. 179
7.1.9 Channel Status Bit 179
7.1.10 Audio Timing 179
7.1.11 HDCP 179
7.1.12 HDCP Authentication VA-1809->Sink 179
7.1.13 HDCP Authentication Part3 VA-1809->Sink 180
7.1.14 HDCP Repeater Sequence 180
7.1.15 Compliance Test Item Check 180
7.2 ANALYSIS OVER LIMIT (yellow display) table 184
7.3 ERROR CODE table 185
7.4 AVI InfoFrame Video Code tables 186
Chapter 8 Product specifications 197
8.1. Internal data 197
8.1.1 SAMPLE1 197
8.1.2 SAMPLE2 204
8.1.3 SAMPLE3 205
8.1.4 SAMPLE4 206
8.1.5 SAMPLE5 207
8.1.6 SAMPLE6 208
8.1.7 SAMPLE7 209
8.1.8 SAMPLE8 210
8.1.9 SAMPLE9 211
8.1.10 SAMPLE10 212
8.1.11 Compliance1 213
8.1.12 Compliance2 214
8.1.13 Compliance3 215
8.1.14 Compliance4 216
8.1.15 Compliance5 217
8.1.16 Compliance6 218
8.2. Connector pin layouts 219
8.2.1. HDMI connector 219
8.2.2. RS-232C connector (D-sub 9 pins, male) 220
8.2.3. D-SUB connector 220
8.3. VA-1809 specifications 221
8.3.1. Specification 221
8.3.2. Ratings 222
8.3.3. Restrictions 222

Foreword

Thank you very much for purchasing this model VA-1809 HDMI protocol analyzer. This manual contains details on the operation procedures to be followed when the VA-1809 is used, the checkpoints and precautions to be observed, and other useful information. Refer to its instructions when using the analyzer.
Ensure that the manual is kept in a safe place where it can be referred to at any time.

Safety precautions

Concerning this unit

- Do not subject the analyzer to strong shocks or throw it around. Doing so may cause the liquid crystal to leak and/or the analyzer to malfunction, rupture, generate heat and cause a fire.
- Do not use the analyzer wherever there is a risk of ignition or explosions.
- Do not place the analyzer inside a microwave oven or other heating or cooking appliance or pressure vessel. Doing so may cause heat or smoke to be generated in the analyzer, combustion and/or damage to the circuit components.
- Inside the analyzer are some high-voltage parts: since exposure to these parts may result in electric shocks or burns and tampering with them may cause malfunctioning, refrain from disassembling, repairing or remodeling the analyzer.
- If a thunderstorm should occur while the analyzer is being used outdoors, immediately turn off its power, disconnect the power cable from the main unit, and move the analyzer to a safe place.

Concerning the power cord

- Always take hold of the molded part of the plug when disconnecting the power cable.
- Do not bend the power cords with excessive force or bundle them. Doing so may cause fire.
- Do not place heavy objects on top of the power cable. This may damage the cord, causing a fire or electrical shock.

Concerning foreign matter

- Do not spill liquids inside the analyzer or drop inflammable objects or metal parts into it. Operating the analyzer under these conditions may cause a fire, electric shocks and/or malfunctioning.

Concerning the power supply

- Use an AC supply voltage within the range of AC $100 \mathrm{~V}-120 \mathrm{~V}$ or AC $200-240 \mathrm{~V}$ for the analyzer
- Do not turn the power back on immediately after having turned it off. Doing so can cause malfunctioning.
- To make the power supplies of the devices to be connected to the VA-1809 common, connect such devices with FG cables.

Concerning the LCD display

- Due to the nature of liquid crystal, some picture elements may be missing (bright spots, dark spots, etc.) at times.
- Do not touch any liquid crystal which has leaked from the liquid crystal panel. If the liquid crystal panel has been damaged by mistake and the liquid (liquid crystal) inside has leaked out, keep the liquid away from your mouth and skin and do not inhale its odors.
- In the event that liquid crystal has made contact with your eyes or mouth, use water to rinse it off immediately. If it has come into contact with your skin or clothing, wipe it off immediately with alcohol, and then rinse it off with soap. Leaving it in place may damage your skin or clothing.
- Exercise care with the glass of a broken liquid crystal panel. If the panel has broken, take care not to cut your hands on the glass shards. If you should touch an area where the glass has broken off, you may injure yourself.
- The LCD panel is a high-precision component and, as such, the following care must be taken in its handling.
> Wiping the panel's surface with benzine, paint thinners, etc. will cause a deterioration in its quality.
> If water (salty water) is left on the display surface, discoloration and staining will result.
> Exposing the panel directly to ultraviolet rays for an extended period may cause the deflection panel to turn brown, in turn causing the contrast to drop and other forms of deterioration to develop in the display quality.
> Moisture inside the analyzer due to condensation, etc. may cause unevenness in the colors.
> Directly tapping the surface or bumping it into objects may crack the panel, etc.
> Do not attempt to disassemble the panel since leaking liquid crystal may make contact with your skin, which is hazardous.
- Handle the liquid crystal protective panel carefully.

Gently wipe off any fingerprints or dirt on the liquid crystal protective panel with a cleaning agent used to clean office automation equipment. Rubbing the panel with too much force may mark or damage the panel.

- Leaving an image on the screen for too long may result in the image being burned onto the screen.
- The user will be charged for repairs or replacement of parts to correct any trouble occurring in the LCD panel whether or not the trouble has occurred during the warranty period.

Concerning impact

- This is a precision instrument and, as such, subjecting it to impact may cause malfunctioning. Take special care when moving the analyzer.
- Do not drop the analyzer.

Concerning the installation and operation locations

- Installing the analyzer in the following kinds of locations may cause malfunctioning and/or accidents.
> Locations with an ambient temperature outside the range of 5 to $40^{\circ} \mathrm{C}$ (see Note 1)
> Locations with an ambient humidity outside the range of 30 to $80 \% \mathrm{RH}$
$>$ Locations in the vicinity of an air conditioner or subject to rapid temperature changes or the formation of condensation
> Locations exposed to direct sunlight (see Note 2)
> Locations exposed to corrosive gases or high concentrations of dust
> Locations where strong magnetic fields are generated
> Locations where the analyzer may be splashed with water, oil, chemicals, etc.
> Locations to which vibrations are transmitted from the floor
> Unstable locations
- Take care to meet the following conditions in order to ensure that the analyzer will be used properly.
$>$ Do not place heavy objects such as a monitor directly on top of the analyzer.
> Avoid placing any objects around the analyzer.

Note 1: When the surface temperature of the LCD panel exceeds $60^{\circ} \mathrm{C}$, the panel's backlight and other parts may be damaged.
Note 2: Exposing the panel directly to ultraviolet rays for an extended period may cause the deflection panel to turn brown, in turn causing the contrast to drop and other forms of deterioration to develop in the display quality.

Concerning what is packed with the unit

The following items have been provided with this analyzer. Be absolutely sure to use only the items supplied for these parts since use of any other items may give rise to trouble.

Standard items

- VA-1809
- VA-1809 instruction manual (what you are reading): 1 copy
- CompactFlash (CF) card (64MB): 1 pc
- Power cable: 1 pc (for use with VA-1809 only)
- FG cable (1.5 meters): 1 pc (for use with VA-1809 only)
- VA-1809 utility software installation CD (Windows compatible): 1 disc

1.1 Introduction

The VA-1809 HDMI (High-Definition Multimedia Interface) protocol analyzer (henceforth referred to in this manual as the VA-1809) allows the protocols required in the development of HDMI transmitters to be checked. Its LCD screen and internal speaker on the front panel enables HDMI images and sound to be easily monitored.
Since the performance information (EDID, SINK) of the VA-1809 can be rewritten, the analyzer allows various kinds of receivers (monitors) to be simulated. It comes with output HDMI connectors so that it can be used as a repeater as well. It can also be used in the development of DVD players and set-top boxes which are equipped with HDMI connectors.

* For the purposes of this manual, the term "receiver" (or "monitor") is used to denote any unit equipped with an HDMI input connector but not with an HDMI output connector such as a monitor or TV, and the term "repeater" is used to denote any unit which is equipped with both HDMI input and HDMI output connectors and which outputs signals on the basis of the input signals.

1.2 Features and main functions

- ANALYZE (measurement) functions

The analyzer measures the HDMI and DVI video timing data. It also measures the contents of the HDMI packets. It checks for differences from the HDMI ratings.
\square Receiver (monitor) functions
HDMI input signals can be received.
Connections

Repeater functions

The analyzer can also be made to function as a repeater by supplying signals through its HDMI output connector.

Connections

\square Emulation functions

The performance information (such as for a TV that supports HDTV or NTSC) of the VA-1809 main unit can be changed to the performance of many other types of monitors.

- Built-in LCD monitor and speaker

With the LCD monitor on the front panel, it is easy to check HDMI images. Similarly, the internal speaker enables HDMI sound to be checked with ease.

- Program functions

The data used to simulate monitors can be managed using programs. It can be changed to the performance of many different kinds of monitors simply by calling the corresponding programs. A group function is also available for selecting ahead of time only those programs used among a pool of many programs.

■ Registration of data onto CompactFlash cards

The ANALYZE (measurement) data, programs, equipment settings and other data can be stored on CompactFlash cards.

■ Hot plug function

This function resets the transmitter without having to connect or disconnect the cables between the transmitter and VA-1809.

■ Log trigger function

This function allows the trigger to be set for capturing the ANALYZE data.

- DDC line monitor function

This function will enable commands to be sent and received over the DDC line.
■ HDMI Ver. 1.2 (except SACD) supported
HDMI 1.2 timing data and InfoFrame are supported.

1.3 Concerning the programs

The information on the performance of the HDMI receivers is stored in the EDID and HDCP registers, and it is relayed when it is read by the HDMI transmitter.
By rewriting this performance information, the VA-1809 enables various HDMI receivers to be simulated. The information can be stored in a single program.

Programs consist of the following data:

- Program data : The program name data is stored.
- EDID date : The EDID data is stored.
- SINK data : The performance information of the DVI or HDMI receiver (monitor) or repeater is stored.
Ten programs are provided inside the EPROM in the VA-1809 main unit as sample programs. (For details, refer to "8.1 Internal data" on page 197.) This data can be used for output or as the original data to be copied onto CF cards.

1.4 Concerning CompactFlash (CF) cards

1.4.1 Introduction

The results of the analyses performed by the VA-1809 can be saved onto CompactFlash (CF) cards. CF cards enable programs, EDID data, SINK data, ANALYSIS data and CONFIG data to be registered and edited.

1.4.2 Types

Use the CF card packed with the VA-1809. Trouble in operation caused by the use of any other CF card is not covered by the warranty.

CF cards come with many and varied specifications. As such, if a card whose operation in the VA-1809 has not been verified is used, the read/write operations may be unstable or the card may not function at all.

1.4.3 Amount of data that can be registered

Shown below is the amount of data that can be registered on a CF card.

	Amount of data that can be registered
Programs (PROGRAM, EDID, SINK)	100
LOG, ANALYSIS data	These can be saved insofar as the CF card has enough free memory to accommodate them.
GROUP data	
CONFIG data	

1.4.4 Storage locations of registered data

When data is registered in a CF card, it is registered in the locations shown below.

Root Folder (TOP)

1.4.5 How to insert the CF card

Point the CF card in the direction of the arrow shown on the top of the card, and insert. Insert it all the way in. Check that the VA-1809's card icon is displayed in white, and card recognition is completed.

1.4.6 How to eject the CF cards

Verify that the card icon has disappeared by holding down the ENTER button, and then remove the card.

Be absolutely sure to adhere to the above sequence of steps when inserting or ejecting the CF card. Action taken in any other sequence may destroy the CF card data. In addition, the CF card will no longer be recognized even when it is re-inserted.

1.5 Parts and their functions

The button functions differ depending on the unit's function and its mode.
For details, refer to the descriptions of the operations outlined in each section.

1.5.1 VA-1809 front panel

No.	Button	Description of function
(1)	Operation LED	This lights when images are input or operations are performed.
(2)	LCD screen	The HDMI input images, analysis results, etc. are displayed on this screen.
(3)	ANALYZE button	HDMI output data analysis is initiated by pressing this button.
(4)	RUN/STOP button	This is used to run or stop the analysis. It works only while analysis results are displayed.
(5)	PROGRAM button	The contents of programs can be edited by pressing this button.
(6)	SAVE button	The settings or analysis results can be saved by pressing this button.
(7)	SETUP button	Various settings can be performed by pressing this button.
(8)	F1, F2, F3, F4 buttons	Settings or programs can be selected by pressing these buttons.
(9)	SHIFT button	The functions of the function buttons can be extended by pressing the buttons together with the shift button.
(10)	CF card slot	This is where the CF cards are inserted.
(11)	HOTPLUG button	The Hot Plug Detect signal can be turned ON or OFF by pressing this button. It works only while analysis results are displayed.
(12)	LOG button	This is used to start or terminate a log.
(13)	MENU button	The menus can be turned ON or OFF by pressing this button.
(14)	ENTER button	Settings can be selected and entered by pressing this button.
(15)	ESC button	Settings can be exited by pressing this button.
(16)	Rotary encoder	When this is rotated, menus or programs can be selected. When it is pressed, its ENTER function is activated. When it is held down (for 2 seconds), the sound is muted. When it is held down and rotated, the sound volume can be adjusted.
(17)	OPERATION LOCK switch	When it is set to ON, none of the panel buttons can be operated.
(18)	PICTURE switch	It enables the rear panel images to be set to ON or OFF.

Always remember to insert the CF card all the way in. Verify that the card icon has disappeared by holding down the ENTER button, and then remove the card. Failing to take the steps in the prescribed sequence may cause the CF card data to be destroyed.

HDMI input images are displayed after their resolution has been converted. For this reason, the images displayed on the LCD may differ from the images actually input.

1.5.2 VA-1809 rear panel

No.	Part	Description
(1)	AC input socket	Connect the power cable here. This socket supports 100-120V and $200-240 \mathrm{~V}$ supply voltages.
(2)	Frame ground (FG) terminal	This is connected to the corresponding FG terminal on the unit connected to the VA-1809.
(3)	EXT MONITOR (VGA) connector	The same output signals as the ones displayed on the LCD screen are output from this connector in analog form. Resolution is fixed at 1024×768 (at 60 Hz). (No signals are output with HDCP.)
(4)	HDMI IN connector	The HDMI output signals of the DVD player, set-top box, etc. are supplied to this connector.
(5)	COAX (coaxial) OUT connector	This is the digital audio output connector.
(6)	HDMI OUT connector	The HDMI signals are output from this connector to the input connector on the HDMI TV set, monitor, etc.
(7)	I/O connector $(25$ pins, female)	This is not used.
(8)	RS-232C connector $(9$ pins, male)	This connector is used to connect a personal computer using an RS-232C cable.
(9)	Ethernet port $(10 / 100 B A S E-T X)$	This port is used to connect to a LAN using an Ethernet cable.

Be absolutely sure to use the power switch to turn the power on and off. Turning the power on or off by connecting or disconnecting the power cable may destroy the data on the CF card.

1.5.3 VA-1809 on-screen display

(5)

No.	Part	Description
(1)	TITLE window	This is where the titles of the on-screen display contents are displayed.
(2)	MAIN window	This is where details of the analysis results, etc. are displayed.
(3)	HELP window	Advice on the button operations is available here.
(4)	STATUS window	The input timing data information appears here.
(5)	STATUS icons	The types, statuses, etc. of the input and output signals are displayed here using icons.
(6)	FUNC (function) icons	The meanings of the function buttons are indicated here. They correspond to the F1 to F4 and SHIFT

1.5.4 Icons

Icon	Name	Description written on the CF card, so do not turn off the power or attempt to eject the card.
		This appears in white when the signal format of the input or output images is HDMI (High-Definition Multimedia Interface).
format icons		

2

Connections with peripherals

2.1 Example of connections when using the VA-1809 as a receiver (monitor)

In this example, the VA-1809 is used as the receiver (monitor) for analyzing the HDMI protocols of the HDMI output device. Timings can be measured even when the DVI output device is not equipped with an HDMI function.

DVD player or other units equipped with HDMI output connector

When using the VA-1809 as a receiver (monitor), use one for which the SINK rx mode is registered as the receiver. For the setup, refer to "Simple setup" on page 133.

2.2 Example of connections when using the VA-1809 as a repeater

In this example, the VA-1809 is used as the repeater for analyzing the HDMI protocols of the HDMI output device. By connecting a monitor that supports HDMI to the HDMI output connector of the VA-1809, it is checked that the output device functions properly to support the repeater.

When using the VA-1809 as a repeater, use one for which the SINK rx mode is registered as the repeater. For the setup, refer to "Simple setup" on page 133.

If a receiver or repeater is not connected to HDMI output, the VA-1809 will operate as a receiver even if SINK rx mode is set to repeater.

2.3 Connections for isolating the HDMI input sound for output

In this example, the audio output is checked by connecting an AV amplifier or other unit to the COAXIAL output connector of the VA-1809.

* Audio output cannot be performed during HDCP execution.

2.4 Example of connections when outputting LCD displays to an analog monitor

In this example, the same displays as on the LCD screen of the VA-1809 are output to an external monitor.

* Displays with the XGA screen resolution are output regardless of the performance (EDID) of the monitor connected to the analog D-SUB output connector. Provide a monitor capable of displaying the XGA resolution.
* The background image cannot be output during HDCP execution. If the background image is turned off with the PICTURE switch, only the overlaid output result can be output.

Menu tree

An outline of the menu structure is as shown in the figure below. Press each menu button while the on-screen display is blank.

3.1 ANALYZE menu

The ANALYZE menu is used when measuring the input HDMI statuses.
The menu is configured as shown below when the ANALYZE button is pressed while the on-screen display is blank.

3.2 PROGRAM menu

The PROGRAM menu is used when copying or editing program data and when editing program groups in the group execution mode (refer to "6.3.3 ANALYSIS MODE" on page 156). The menu is configured as shown below when the PROGRAM button is pressed while the on-screen display is blank.

3.3 SETUP menu

The SETUP menu is used when setting the LCD screen of the VA-1809 or performing the equipment settings. The menu is configured as shown below when the SETUP button is pressed.

3.4 SAVE menu

The SAVE menu is used when the current statuses are to be stored.
The menu is configured as shown below when the SAVE button is pressed.

ANALYZE
 (measurement result display methods)

When the ANALYZE button is pressed, the HDMI signal timing data can be measured, and InfoFrame and other contents can be decoded and displayed. The menu tree in the measurement result display area is configured as shown below.

To display the measurement result of each item, perform the following procedure;
OSD hidden state \rightarrow ANALYZE Display ERROR REPORT
\rightarrow Rotary Key Select and execute each item.
For more information, see the description of each item.

4.1 ANALYZE Common Function Keys

The common function keys of the ANALYZE menu are as shown below.

The function keys common to the ANALYZE menu are as follows.

KEY	Description
GUI/HEX	Toggles between GUI display and HEX display.
PROG INC	Increments the program number.
PROG DEC	Decrements the program number.
DIRECT PROG CALL	Directly select a program number, and then execute the corresponding program.
Repeater/Receiver	Toggles the operation mode between Repeater and Receiver.
DVI/HDMI	Toggles the signal format between DVI and HDMI.
HDCP ON/OFF	Turns ON/OFF HDCP.
CONNECTED EDID SET	Reads the EDID of the device at the output destination of the VA-1809, and sets it as the EDID of the VA-1809 main unit.

* DDC Monitor, Compliance Test Item Check and CEC Analyzer on the ANALYZE menu have special items. For more information about the function keys for these special items, see the following; for DDC Monitor, see page 50, "4.14 DDC Monitor," for Compliance Test Item Check, see page 53, "4.15 Compliance Test Item Check," and for CEC Analyzer, see page 69, "4.16 CEC Analyzer."

4.1.1 GUI/HEX

The measurement screen is switched between the GUI display and hexadecimal display on this screen.

While the on-screen display is blank: Select ANALYZE ANALYSIS. \rightarrow F1 GUI/HEX.

GUI display

HEX display

4.1.2 PROG INC/PROG DEC/DIRECT PROG CALL

The VA-1809 has device performance information as programs. By toggling between them, it uses a virtual HDMI device. By using the PROG INC, PROG DEC and DIRECT PROG CALL functions keys, the performance of each device can be changed by changing the program number set in the VA-1809.
For more information about program switching, see page 147, "6.1.2 Executing programs (LOAD)."

4.1.3 Repeater/Receiver

This function key toggles the operation mode between Repeater and Receiver. This operation toggles bit 6 of the HDCP register "Bcaps."

* It is not reflected in the SINK data.

4.1.4 DVI/HDMI

This function key toggles the receivable signal format between DVI and HDMI.
This operation toggles bit 7 of the HDCP register "Bcaps."

* It is not reflected in the SINK data.

4.1.5 HDCP ON/OFF

This function key toggles HDCP between receive enabled and receive disabled. This operation enables or disables the HDCP register (device address 0x74).

* It is not reflected in the SINK data.

4.1.6 CONNECTED EDID SET

This function key sets the EDID data to be identical to that of the device connected to the output destination of the VA-1809.
It does not change if no device is connected to the output destination of the VA-1809.

* It is not reflected in the EDID data.

4.2 Error reports

The ANALYSIS ERROR REPORT screen shows a list indicating an error or no error for each measurement item.
While the on-screen display is blank: Select ANALYZE ANALYSIS.

4.3 Video Timing

The input timing data is measured.
While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select Video Timing.

The display items are shown below.

Item	Figure	Details
Video Code		Refer to "7.4 AVI InfoFrame Video Code tables" on page 186.
Pixel Clock		Pixel frequency
H Frequency		HSYNC frequency
V Frequency	HT	HSYNC frequency
H Total Pixels	HD	HDISP width
H Active Pixels	HS	HSYNC width
H Sync Pixels	HB	HSYNC back porch width
H Back Porch Pixels	HSYNC front porch width	
H Front Porch Pixels	HF	HSYNC polarity
H Sync Polarity		VTOTAL width (1-frame increments)
V Total Lines	VT	VD(VD1+VD2)
VDISP width (1-frame increments)		
V Active TOTAL	VD(1)	VDISP width
V Active Field1	VS(1)	VSYNC width
V Sync Field1	1-frame increments for	
non-interlacing; value of		
first field for interlacing.		
V Back Porch Field1	VB(1)	VSYNC back porch width

\(\left.\begin{array}{|l|l|l|l|}\hline Item \& Figure \& Details

\hline V Front Porch Field1 \& VF(1) \& VSYNC front porch width \& 1-frame increments for

non-interlacing; value of

first field for interlacing.\end{array}\right]\)| Difference between |
| :--- |
| horizontal and vertical |
| phases |, | HV Sync OffSet1 | | VDISP width of 2nd field during interlacing |
| :--- | :--- | :--- |
| V Active Field2 | VD2 | VSYNC width of 2nd field during interlacing |
| V Sync Field2 | VS2 | Back porch width of VSYNC of 2nd field during
 interlacing |
| V Back Porch Field2 | VB2 | Front porch width of VSYNC of 2nd field during
 interlacing |
| V Front Porch Field2 | VF2 | Difference between horizontal and vertical phases of
 2nd field during interlacing |
| HV Sync OffSet2 | | VSYNC polarity |
| V Sync Polarity | | Interlace or non-interlace |
| Interlace | | VESA standard timing name *1 |
| VESA CODE | | Supported/Not supported *2 |
| EIA CODE | | |
| EDID SUPPORT | | |

* For details on the Video Timing errors, refer to "7.1.1 Video Timing" on page 175.
* It is not possible to perform measurements correctly if the HDMI signals have been input with a timing that exceeds the limits of the specifications. (Refer to "7.2 ANALYSIS OVER LIMIT (yellow display) table" on page 184.)
*1 "VESA CODE" and "EIA CODE" display the timing code assumed from the input video data.
*2 "EDID Support" displays whether the input timing is supported by the EDID set in the VA-1809. (It is determined by DTD of Base Block as well as DTD and SVD of Extension Block.)

Horizontal sync signal

Vertical sync signal (non-interlace)

Vertical sync signal (interlace)

4.4 AVI InfoFrame

The AVI (= Auxiliary Video Information) InfoFrame data of HDMI inputs is decoded and displayed on this screen. The information on the images output by the transmitter is input as AVI InfoFrame.
While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select AVI InfoFrame.

Display details of AVI InfoFrame with the GUI display are listed below.

Display item	Details
InfoFrame Type Code	82 H
InfoFrame Version Number	XX H
Length of AVI InfoFrame	XX H
Scan Information	Overscanned
	Underscanned
	Future
	Bar Data not valid
	Vert.Bar Info valid
	Horiz. Bar Info valid
	Vert. and Horiz. Bar Info valid
RGB or YCbCr	No Data
	Active Format Information valid
	RGB
	YCbCr4:2:2
	YCbCr4:4:4
	Future

Active Format Aspect	reserved
	box 16:9 (top)
	box 14:9 (top)
	box > 16:9 (center)
	Same as picture aspect ratio
	4:3 (center)
	16:9 (center)
	14:9 (center)
	4:3 (with shoot \& protect 14:9 center)
	16:9 (with shoot \& protect 14:9 center)
	16:9 (with shoot \& protect 4:3 center)
Picture Aspect	No Data
	4:3
	16:9
	Future
Colorimetry	No Data
	SMPTE 170M / ITU601
	ITU709
	Future
Non-uniform Picture Scaling	No Known non-uniform Scaling
	Picture has benn scaled horizontally
	Picture has benn scaled vertically
	Picture has been scaled horizontally and vertically
Video Code	[X$]$ XXX \times XXX @ XXX / XXX Hz X : X
	Reserved
	No Video Code Available
	Refer to "7.4 AVI InfoFrame Video Code tables" on page 186.
Repetition	No Repetition
	pixel sent X times
	Reserved
Line Number of End of Top Bar	0 to 65535
Line Number of Start of Bottom Bar	0 to 65535
Pixel Number of End of Top Bar	0 to 65535
Pixel Number of Start of Bottom Bar	0 to 65535

* For details on the AVI InfoFrame errors, refer to "7.1.2 AVI InfoFrame" on page 176.

4.5 SPD InfoFrame

The SPD (= Source Product Description) InfoFrame data of HDMI inputs is decoded and displayed on this screen. The information of the transmitter is input as SPD InfoFrame.
While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select SPD InfoFrame.

Display details of SPD InfoFrame with the GUI display are listed below.

Display item	Details
InfoFrame Type Code	83 H
InfoFrame Version Number	XX H
Length of SPD InfoFrame	XX H
Checksum	
Vendor Name Charanalyze_acter	(8 characters)
Product Description Charanalyze_acter	(16 characters)
Source Device Information	unknown
	Digital STB
	DVD
	D-VHS
	HDD Video
	DVC
	DSC
	Video CD
	Game
	PC general
	Blu-Ray Disc
	Super Audio CD
	Reserved

[^0]
4.6 Audio InfoFrame

The Audio InfoFrame data of HDMI inputs is decoded and displayed on this screen. The information on the sound output by the transmitter is input as Audio InfoFrame.
The input Audio InfoFrame is decoded and displayed.
While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select Audio InfoFrame.

Display details of Audio InfoFrame with the GUI display are listed below.

Display item	Details
InfoFrame Type Code	XXH
InfoFrame Version Number	XX H
Length of Audio InfoFrame	XX H
Checksum	
Audio Coding Type	Refer to Stream Header
	IEC60958 PCM
	AC-3
	MPEG1(Layers 1 \& 2)
	MP3(MPEG1 Layer 3)
	MPEG2(multichannel)
	AAC
	DTS
	ATRAC
	One Bit Audio
	Dolby Digital
	DTS-HD
	MLP

	Reserved
Audio Channel Count	Refer to Stream Header
	2-8ch
Sampling Frequency	Refer to Stream Header
	32 kHz
	44.1 kHz
	48 kHz
	88.2 kHz
	96 kHz
	176.4 kHz
	192 kHz
Sample Size	Refer to Stream header
	16 bit
	20 bit
	24 bit
Data Byte 3	XX H
Speaker Placement	FRC FLC RR RL FC LFE FR FL (Refer to Written Standards)
	Reserved
Level Shift Value	0-15dB
Down-mix Inhibit Flag	Permitted or No information
	Prohibited

* "Stream Header" refers to the Channel Status Bit. For details on the Channel Status Bit measurement result display, refer to "4.11 Channel Status Bit" on page 40.
* For details on the Audio InfoFrame errors, refer to "7.1.4 Audio InfoFrame" on page 177.

4.7 MPEG InfoFrame

The MPEG InfoFrame data of HDMI inputs is decoded and displayed on this screen. If the images sent by the transmitter have been obtained by converting them from compressed images, the information on the compressed images is input as MPEG InfoFrame.

While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select MPEG InfoFrame InfoFrame).

Display details of MPEG InfoFrame with the GUI display are listed below.

Display item	Details
InfoFrame Type Code	85 H
InfoFrame Version Number	XX H
Length of MPEG InfoFrame	XX H
MPEG Bit Rate	X M XXX k XXXX Hz
Field Repeat	Ner Field (picture)
	Repeated Field
MPEG Frame	Unkown (No Data)
	1 Picture
	B Picture
	P Picture

[^1]
4.8 ACP Packet

The ACP (= Audio Content Protection) Packet data of HDMI inputs is decoded and displayed on this screen. Information for protecting the copyrights of the sound sent by the transmitter is input as the ACP packet.
While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select ACP Packet.

Display details of ACP Packet with the GUI display are listed below.
*2 is displayed when Super Audio CD is selected as the ACP Type setting; *1 is displayed when any other setting is selected for ACP Type.

Display item		Details
Packet Type Code		04 H
ACP_Type		Generic Audio *1
		IEC60958-Identified Audio *1
		DVD Audio *1
		Super Audio CD *2
		Reserved *1
*1	DVD-Audio_Type_dependent _Generation	XX H
	Copy_Permission	Copying is permitted without restriction (Copy Freely)
		reserved for copyright management system use
		Copying is permitted per "audio_copy_number" as specified below
		No more copies are permitted unless exceptional conditions are provided by a copyright management system

	Copy_Number	Number of permitted copies is ' 1 '
		Number of permitted copies is '2'
		Number of permitted copies is '4'
		Number of permitted copies is '6'
		Number of permitted copies is ' 8 '
		Number of permitted copies is '10'
		Number of permitted copies is ' 3 '
		Number of permitted copy is not restricted. (Copy One Generation)
	Quality	$\mathrm{CH}<2$, fs $<48 \mathrm{kHz}, \mathrm{Q}<16$ bits
		$\mathrm{CH}<2$, fs\&Q $=$ not restricted
		CH\&fs\&Q = not restricted
		$\mathrm{CH}=$ not restricted, fs $<48 \mathrm{kHz}, \mathrm{Q}<16 \mathrm{bits}$
	Transaction	not present
		reserved for copyright management system use
*2	Count_A	XX times
	Count_S	XX times
	Count_U	XX times
	CCI_Flags Q_A	CD Quality
		unlimited DSD quality
	CCI_Flags Q_S	CD Quality
		unlimited DSD quality
	CCI_Flags Q_U	CD Quality
		unlimited DSD quality
	CCI_Flags Move_A	not allowed for the content
		allowed for the content
	CCI_Flags Move_S	not allowed for the content
		allowed for the content
	CCI_Flags Move_U	not allowed for the content
		allowed for the content
	CCI_Flags Reserved	NO ERROR
		ERROR
	CCI Rsv of Data Byte5-16	NO ERROR
		ERROR
	Rsv of Data Byte17-27	NO ERROR
		ERROR

* For details on the ACP Packet errors, refer to "7.1.6 ACP Packet" on page 178.

4.9 ISRC1 Packet

HDMI The ISRC1 (= International Standard Recording Code) Packet data of HDMI inputs is decoded and displayed on this screen. If the sound sent by the transmitter is DVD Audio, the sound source identification code is input. For ISRC1, a UPC EAN ISC number from 0 to 15 as defined under the DVD Audio standard is used in addition to the value defined by the HDMI standard.
While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select ISRC1 Packet.

Display details of ISRC1 Packet with the GUI display are listed below.

Display item	Details
Packet Type Code	05 H
ISRC_Cont	XX H
ISRC_Valid	XX H
ISRC_Status	XX H
Validity information	OH UPC/EAN and ISRC are invalid
	4H UPC/EAN is invalid and ISRC is valid
	8 H UPC/EAN is valid and ISRC is invalid
	CH UPC/EAN and ISRC are valid
Catalogue code (UPC/EAN \#1 - \#13)	XXXXXXXXXXXXX H
Country code (ISRC \#1 - \#2)	XX
First owner code (ISRC \#3 - \#5)	XXX
Year of recording code (ISRC \#6 - \#7)	XX H
Recording code (Recording-item code)	XXXXXH
Rsv of Header Byte1	

Rsv of Header Byte2	
Rsv of Data Byte16-27	
NO ISRC1 Packet	

* For details on the ISRC1 Packet errors, refer to "7.1.7 ISRC1 Packet" on page 178.

4.10 ISRC2 Packet

The ISRC2 Packet data of HDMI inputs is decoded and displayed on this screen. For ISRC2, a UPC EAN ISC number from 16 to 31 as defined under the DVD Audio standard is used. (Currently,
"Reserve" is the status of this number under the DVD Audio standard.)
While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select ISRC2 Packet.

Display details of ISRC2 Packet with the GUI display are listed below.

Display item	Details
Header Byte0	06 H
Header Byte1-2	XXH for each byte
Data Byte1-16	XXH for each byte

* For details on the ISRC2 Packet errors, refer to "7.1.8 ISRC2 Packet" on page 179.

4.11 Channel Status Bit

The Channel Status Bit (a subcode enabling the transmitting device, sampling frequency and other specifications to be ascertained) in the audio streams of HDMI inputs is decoded and displayed on this screen.

While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select Channel Status Bit.

Display details of Channel Status Bit with the GUI display are listed below.

Display item	Details
Professional or Consumer	Professional Mode
	Consumer Mode
Audio	linear PCM samples
	other than linear PCM samples
Copy / Copyright	copyright
	no copyright
Emphasis	Audio = Linear PCM samples
	without pre-emphasis
	with 50/15 us pre-emphasis
	Reserved - 2channel audio
	Reserved - 4channel audio
	Audio = other than Linear PCM samples
	Default state
	Reserved
Channel Status Mode	Mode 00
	Reserved
Category code	General. Used temporarily

	Compact disc digital audio signal compatible with IEC 60958
	Laser optical digital audio systems for which no other category code is defined
	Mini disc system
	Digital versatile disc
	PCM encoder/decoder
	Digital signal mixer
	Sampling rate converter
	Digital sound sampler
	Digital sound processor
	DAT
	Video tape recorder with digital sound
	Digital compact cassette
	Digital audio broadcast signal with or without a video signal (Japan)
	Digital audio broadcast signal with or without a video signal (Europe)
	Digital audio broadcast signal with or without a video signal (USA)
	Electronic software delivery
	Synthesizer
	Microphone
	A/D converter
	Reserved
L(Generation Status) Bit	0-1
Source number	Do not take into account.
	1-15 CH
Channel number	Do not take into account.
	A - O (0x1:A; 0x2:B; 0xF:O)
Sampling frequency	32kHz
	44.1 kHz
	48kHz
	88.2 kHz (- HDMI Original)
	96 kHz (- HDMI Original)
	176.4 kHz (- HDMI Original)
	192kHz (- HDMI Original)
	Reserved
Clock accuracy	Level 2, $\pm 1000 \mathrm{ppm}$ (default)
	Level 3, variable pitch
	Level 1, $\pm 50 \mathrm{ppm}$ - high accuracy
	Reserved
Maximum audio sample word length	20bits
	24bits
Sample word length	Maximum audio sample word length $=20$ bit
	Word length not indicated (default)
	20bits

	\mid 22bits
23bits	
24bits	
21bits	
Reserved	
Maximum audio sample word length = 24 bit	
	Word length not indicated (default)
16bits	
18bits	
19bits	
20bits	
17bits	
Reserved	

* For details on the Channel Status Bit errors, refer to "7.1.9 Channel Status Bit" on page 179.

4.12 Audio Timing

The constants (N, CTS), which are used for playing the audio clock of HDMI inputs from the video pixel clock, and the HDMI audio volume are displayed on this screen.
While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select Audio Timing.

Display details of Audio Timing with the GUI display are listed below.

Display item	Details
N	Display of register values (DEC)
CTS	
CH1	Volume of each channel
CH 2	
CH3	
CH 4	
CH 5	
CH6	
CH 7	
CH8	

* For details on the Audio Timing errors, refer to "7.1.10 Audio Timing" on page 179.

4.13 HDCP

Each constant used when authenticating HDCP on the HDMI receiving side is displayed.

4.13.1 HDCP Authentication Source -> VA-1809

The constants which are used when HDCP is authenticated at the HDMI reception end are displayed on this screen.

While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select HDCP.

Display details of HDCP with the GUI display are listed below.

Display item	Details
AN	Pseudo random value sent from the transmitter to the VA-1809 that is used to authenticate HDCP
AKSV	Key Selection Vector on the transmitting side
BKSV	Key Selection Vector of the VA-1809
V'	Value for determining whether the KSV list generated by the VA-1809 is valid *
KSVFIFO	Value of the KSV of the receiver/repeater connected to the downstream collected by the VA-1809 *
DeviceCount	Total number of devices connected to the downstream *
Depth	Total number of levels connected to the downstream *
Ri'	Authentication value calculated by the VA-1809

* Displayed only for the repeater.

[^2]

4.13.2 HDCP Authentication VA-1809 -> Sink

Each constant exchanged on the downstream side can be displayed among authentications of HDCP.

OSD hidden state \rightarrow ANALYZE \rightarrow Rotary Key Select and execute HDCP Auth Sink.

The display contents of HDCP during GUI display are as follows.

Display item	Details
AN	Pseudo random value sent from the VA-1809 to the receiver that is used to authenticate HDCP
AKSV	Key Selection Vector of the VA-1809
BKSV	Key Selection Vector on the receiving side
V' $^{\prime}$	Value for determining whether the KSV list generated by the receiver is valid *
KSVFIFO	Value of the KSV of the receiver/repeater connected to the downstream collected by the receiver *
DeviceCount	Total number of devices connected to the downstream *
Depth	Total number of levels connected to the downstream *
Ri	Authentication value calculated by the receiver
Ri'	Authentication value calculated by the VA-1809

4.13.3 HDCP Authentication Part 3 Source -> VA-1809

Among authentications of HDCP, the constant (Ri') used for Part 3 (verification of whether HDCP encoding and decoding are performed correctly) is displayed consecutively on the upstream side.
OSD hidden state \rightarrow ANALYZE
\rightarrow Rotary Key Select and execute HDCP Auth Part 3 Source.

4.13.4 HDCP Authentication Part 3 VA-1809 -> Sink

Among authentications of HDCP, the constants (Ri, Ri') used for Part 3 (verification of whether HDCP encoding and decoding are performed correctly) are displayed consecutively on the downstream side.

OSD hidden state \rightarrow ANALYZE \rightarrow Rotary Key Select and execute HDCP Auth Part 3 Sink.

4.13.5 HDCP Repeater Sequence Check

The result of each authentication processing between sink devices is displayed when a repeater is set.
OSD hidden state \rightarrow ANALYZE
\rightarrow Rotary Key Select and execute HDCP Repeater Sequence Check.

Display item	Description
1st Down Stream Connect	Check whether a sink device is connected to the VA-1809 in the 1st part of authentication processing. If connected, the message "Connected" is displayed.
1st DDC Line Status	Check the status of the DDC line with the sink device connected to the VA-1809 in the 1st part of authentication processing. If normal, the message "Normal" is displayed; if abnormal, the message "Error" is displayed.
1st YCbCr Support	Check whether the EDID of the sink device connected to the VA-1809 supports YCbCr if the signal to be input to the VA-1809 is the YCbCr signal in the 1st part of authentication processing. If supported, the message "Support" is displayed; if not supported, the message "Not Support" is displayed.
1st Repeater or Receiver	Check whether the sink device connected to the VA-1809 is a repeater or receiver in the 1st part of the authentication processing. If it is a repeater, the message "Repeater" is displayed; if it is a receiver, the message "Receiver" is displayed.
1st Link Check	Check the validity of BKSV in the 1st part of authentication processing. If normal, the message "Normal" is displayed; if abnormal, the message "Error" is displayed. (If BKSV is not comprised of twenty "1s" and twenty "0s," it is determined abnormal.)
2nd KSV FIFO Ready	Check the KSV list load completion status of the sink device connected to the VA-1809 in the 2nd part of authentication processing. If loading is complete, the message "Normal" is displayed; if incomplete, the message "Error" is displayed.

2nd Depth Check	Check the validity of Depth loaded from the sink device connected to the VA-1809 in the 2nd part of authentication processing. If normal, the message "Normal" is displayed; if abnormal, the message "Error" is displayed. (If the Depth value exceeds MAX (7), it is determined abnormal.)
2nd Count Check	Check the validity of Count loaded from the sink device connected to the VA-1809 in the 2nd part of authentication processing. If normal, the message "Normal" is displayed; if abnormal, the message "Error" is displayed. (If the Count value exceeds MAX (127), it is determined abnormal.)
2nd Compare V	Compare V ' loaded from the sink device connected to the VA-1809 with V calculated by the VA-1809 in the 2nd part of authentication processing. If the values are the same, the message "Normal" is displayed; if different, the message "Error" is displayed.

4.14 DDC Monitor

DDC is the abbreviation for Display Data Channel; it is the standard for sending the information of the monitor specified by VESA to the source. It is also used to transmit/receive HDCP data in HDMI. Data is transmitted/received via the DDC line using the I2C bus method.

The VA-1809 can display the data flowing through the DDC line between the input side of the VA-1809 and the HDMI source device on the LCD located on the front of the main unit. By using this function, whether the HDMI source device is correctly transmitting/receiving the DDC command can be checked. Also, by triggering arbitrary data, only the necessary data can be displayed.

While the on-screen display is blank: Select ANALYZE ANALYSIS.
\rightarrow Use the Rotary key to select DDC Monitor.

The display contents of DDC Monitor are as follows.

Display item	Figure
S/=Start Condition, -/P=Stop Condition	(1)
Slave Address, Sub Address or Data	(2)
Data type *	(3)
R=Read , W=Write	(4)
A=Acknowledge , N=Not acknowledge	(5)

* The data type is classified as follows according to Slave Address.

Slave Address	Data type display	Description
A0 H	EDID	Read command of EDID
60 H	Segment Pointor	Segment Pointer Switch command of EDID
74 H	Receiver	HDCP related commands
Other than above	$?$	Commands other than EDID and HDCP

* If abnormal commands are continuously sent (for example, start bits are sent continuously), it may not be possible to capture data. If data cannot be captured, error display is performed.
* A maximum of 4096 lines can be displayed at a time.

■ Description of the function keys dedicated to DDC Monitor
Page 3 contains the function keys dedicated to DDC Monitor.
OSD hidden state \rightarrow ANALYZE \rightarrow Rotary Key Select and execute DDC Monitor.
\rightarrow Press SHIFT twice. Page 3

Clear F1

When Clear is executed, all data displayed on the Monitor will be cleared.
Trigger Set F2
This function key sets the trigger mode and data for executing DDC Monitor. Change the setting using the rotary key.

Item	Description
ON	Starts DDC ANALYZE.

Trigger Mode

Item	Description
Auto	Displays all data regardless of Trigger Data.
Normal	Selects and displays only the command of the data selected by Trigger Data.
Single Repeat	Triggers the command of the data selected by Trigger Data, and starts acquiring.

* From the start bit immediately before triggered data to the stop bit immediately after are treated as one command.
* If there is no stop bit, it is not treated as a command.

Trigger Data

Item	Description
SLAVE	Can trigger the specified SLAVE Address.
DATA	Can trigger the specified data. (It will be data other than the SLAVE address.)
EDID	Triggers a command whose SLAVE Address is EDID (0xA0).
Receiver	Triggers a command whose SLAVE Address is Receiver (0x74).
Segment Pointor	Triggers a command whose SLAVE Address is Segment Pointer (0x60).

* A trigger can be applied again by pressing the RUN button to change from STOP to RUN.

SPIN STEP PAGE/LINE F3

This function key sets whether to scroll the monitor result screen display in units of lines or pages when the rotary key is rotated.

4.15 Compliance Test Item Check

The HDMI standard requires a compliance test in order to prevent troubles such as connectivity.
The VA-1809 performs part of the compliance check mainly on the source side, and can display the result for each item.

OSD hidden state \rightarrow ANALYZE \rightarrow Rotary Key Select Compliance Test Item Check.
\rightarrow Execute MEASUREMENT START (F2 on PAGE 3) measurement.

* Built-in programs 91 to 96 are compliance check programs.

All test items of Compliance Test Item Check cannot be executed simultaneously. Compliance Test Item Check consists of the following.

- 7-1 EDID Related Behavior

TEST ID 7-1: EDID Related Behavior is supported.
This checks whether the source device connected to the VA-1809 reads the EDID by DDC. Different sized EDID testing can be done with buit-in program PRG091, 092 and 093. Operating procedure is shown below.

The result is shown below.

Display	Description
PASS	EDID is read correctly.
NO EDID	EDID cannot be read at all.
NO SegP	There is no Segment Pointer in the EDID whose size needs Segment pointer.
SegP SIZE OVER	Segment pointer is larger than it should be in the EDID.
Sent EDID is little	All of the EDID data can not be read.

7-19 Packet Type

TEST ID 7-19: Packet Type is supported.
This checks whether the device connected to the VA-1809 correctly transmits ACP Packet, ISRC1 Packet, ISRC2 Packet, Audio Packet and Channel Status Bit.
Operating procedure is shown below.

The result is shown below.

Display	Description
PASS	Transmission data of ACP
FAIL	Transmission data of ACP

* By pressing DETAIL, detailed information (which of ACP, ISRC1 or ISRC2 has problem) can be viewed.

7-23 RGB to RGB-only Sink

TEST ID 7-23: Pixel Encoding RGB to RGB-only Sink is supported.
This checks that the source device connected to the VA-1809 does not output YCbCr signals to devices that can only receive RGB signals.
To check this item, the EDID of the program currently set in the VA-1809 must be set to "receive only RGB."
Operating procedure is shown below.

The result is shown below.

Display	Description
PASS	Video is out put in RGB color space signal.
FAIL	Video is output in YCbCr color space signal.
Please Change EDID!	Set EDID to "receive only RGB."

7-24 YCbCr to YCbCr Sink

TEST ID 7-23:Pixel Encoding YCbCr to YCbCr Sink is supported.
This checks that the source device connected to the VA-1809 outputs YCbCr signals to devices that can receive YCbCr signals.
To check this item, the EDID of the current program in the VA-1809 must be set to "receive YCbCr."
Operating procedure is shown below.

The result is shown below.

Display	Description
PASS	Video is out put in YCbCr color space signal.
Please Send YCbCr Signal!	Video is output in RGB color space signal. Change setting to output video in YCbCr color space.
Please Change EDID!	Set EDID to "receive only YCbCr."

7-25 Video Format Timing

TEST ID 7-25: Video Format Timing is supported.
This checks whether signals are output from the source device connected to the VA-1809 in correct format.

The result is shown below.

Display	Description
PASS	Video code of AVI InfoFrame and transmitting video timing are matched.
FAIL	Video code of AVI InfoFrame and transmitting video timing are not matched.

* By pressing DETAIL \rightarrow Rotary Key Video Timing, detailed information can be
confirmed.

7-26 Pixel Repetition

TEST ID 7-26: Pixel Repetition is supported.
This checks whether the Pixel Repetition signal output from the source device connected to the VA-1809 is correctly reflected in AVI InfoFrame.

The result is shown below.

Display	Description
PASS	Repetition of AVI InfoFrame and repetition of transmitting video data are matched.
FAIL	Repetition of AVI InfoFrame and repetition of transmitting video data are not matched.

[^3]
7-27 AVI InfoFrame

TEST ID 7-27: AVI InfoFrame is supported.
This checks the content of AVI InfoFrame sent from the source device connected to the VA-1809.

The result is shown below.

Display	Description
PASS	The contets of AVI InfoFrame support the standard.
FAIL	The contets of AVI InfoFrame does not support the standard.

[^4]
7-29 ACR

TEST ID 7-29: ACR is supported.
This checks the ACR Packet sent from the source device connected to the VA-1809. If normal, "PASS" is displayed; if abnormal, "FAIL" is displayed.

* Because it takes time to detect sound, "FAIL" is displayed for a while after image recognition.

The result is shown below.

Display	Description
PASS	The value of N and CTS in ACR Packet supports the standard.
FAIL	The value of N and CTS in ACR Packet does not support the standard.
Please Change Sampling frequency!	The frequency is input other than 32, 44.1 or 48kHz. Change input frequency to either 32, 44.1 or 48kHz.
Please Change Video Timing!	The timing is input other than 480p or 576p. Change input timing to either 480p or 576p.
Please Change Audio Type!	Audio is not input as PCM. Change input audio to PCM.
Please Change Channel Count!	Number of channels is not set as 2CH. Change to 2CH setting.

* By pressing DETAIL \rightarrow Rotary Key Audio Timing, detailed information can be confirmed.

7-31 Audio InfoFrame

TEST ID 7-31: Audio InfoFrame is supported.
This checks Audio InfoFrame sent from the source device connected to the VA-1809. If normal, "PASS" is displayed; if abnormal, "FAIL" is displayed.
(In the case of "FAIL," detailed information can be viewed by pressing the DETAIL key.)

The result is shown below.

Display	Description
PASS	Contents of transmission data of Audio InfoFrame supports the standard.
FAIL	Contents of transmission data of Audio InfoFrame does not support the standard.
Please Change Sampling frequency!	The frequency is input other than 32, 44.1 or 48kHz. Change input frequency to either 32, 44.1 or 48kHz.
Please Change Video Timing!	The timing is input other than 480p or 576p. Change input timing to either 480p or 576p.
Please Change Audio Type!	Audio is not input as PCM. Change input audio to PCM.
Please Change Channel Count!	Number of channels is not set as 2CH. Change to 2CH setting.

* By pressing DETAIL \rightarrow Rotary Key Audio Timing, detailed information can be confirmed.

7-32 Audio Packet Layout

TEST ID 7-32: Audio Sample Packet Layout is supported.
This checks Audio Sample Packet Layout sent from the source device connected to the VA-1809. If normal, "PASS" is displayed; if abnormal, "FAIL" is displayed.

The result is shown below.

Display	Description
PASS	Audio Packet Layout bit and Channel Count \& Channel Allocation of Audio InfoFrame are matched.
FAIL	Audio Packet Layout bit and Channel Count \& Channel Allocation of Audio InfoFrame are not matched.
Please Change Audio Type!	Audio is not input as PCM. Change input audio to PCM.

7-33 Interoperability With DVI

TEST ID 7-33: Interoperability With DVI is supported.
This checks that the source device connected to the VA-1809 does not output HDMI signals to a DVI dedicated device. To perform this check, the EDID setting of the current program in the VA-1809 must be set to "HDMI unsupported." In the case of DVI input, "PASS" is displayed; in the case of HDMI input, "FAIL" is displayed.

The result is shown below.

Display	Description
PASS	Outputs DVI signal to the unit whose EDID is set as DVI.
FAIL	Outputs HDMI signal to the unit whose EDID is set as DVI.

[^5]
8-1 EDID Readable

TEST ID 8-1: EDID Readable is supported.
This reads the EDID of the sink device connected to the VA-1809, and checks the structure. If no sink device is connected, "----" is displayed.

The result is shown below.

Display	Description
PASS	EDID structure of connecting device is set correctly.
FAIL	EDID structure of connecting device is not set correctly.

* Refer to "7.1.15 Compliance Test Item Check" (p180) for details of Compliance Test.

8-2 EDID VESA Structure

TEST ID 8-2: EDID VESA Structure is supported.
This reads the EDID of the sink device connected to the VA-1809, and checks whether the structure is as defined by VESA. If no sink device is connected, "----" is displayed.

The result is shown below.

Display	Description
PASS	EDID structure of connecting device is set as VESA's standard
FAIL	EDID structure of connecting device is not set as VESA's standard

[^6]
8-3 EDID CEA Structure

TEST ID 8-3: CEA Timing Extension Structure is supported.
This reads the EDID of the sink device connected to the VA-1809, and checks whether the structure is as defined by CEA. If no sink device is connected, "----" is displayed.

The result is shown below.

Display	Description
PASS	EDID structure of connecting device is set as CEA's standard
FAIL	EDID structure of connecting device is not set as CEA's standard

* Refer to "7.1.15 Compliance Test Item Check" (p180) for details of Compliance Test.

Functions keys dedicated to Compliance Test Item Check
Page 3 contains the function keys dedicated to Compliance Test Item Check.
OSD hidden state \rightarrow ANALYZE
\rightarrow Rotary Key Select and execute Compliance Test Item Check
\rightarrow Press SHIFT twice Page 3

DETAIL F1

This function key allows the viewing of detailed information of abnormal "FAIL" items. By selecting and executing items for which you want to view detailed information with the Rotary Key, you can jump to the corresponding detail screen.

The applicable items are as follows:

- 7-19 Packet Type
-7-25 Video Format Timing
- 7-27 Audio InfoFrame
-7-29 ACR
- 7-31 Audio InfoFrame

MEASUREMENT START

This function key starts the measurement of each check item.

4.16 CEC Analyzer

CEC is the abbreviation for Consumer Electronics Control; it is the function for mutually controlling among devices connected using HDMI. For example, it can play a DVD player from a TV, and turn ON/OFF the power to a TV or DVD player from an AV amplifier (AV center). CEC is implemented by exchanging messages among devices via the CEC line of HDMI.
The VA-1809 can monitor the CEC line and transmit/receive commands.

* This function is optional. For more information, please contact our Sales Department.

OSD hidden state \rightarrow ANALYZE \rightarrow Select and execute Rotary Key CEC Analyzer.

The GUI display for the CEC analyzer is as shown below.

Description of the Function Keys Dedicated to CEC Analyzer
The function keys used exclusively for the CEC analyzer take effect on PAGE 3 and the subsequent pages.

OSD hidden state \rightarrow ANALYZE \rightarrow Rotary Key Select and execute CEC Analyzer.
\rightarrow Press SHIFT twice. Page 3

PAGE 3

Clear F1 :PAGE3

When the Clear function is executed, all the data shown on the monitor display is cleared.

Send F2 :PAGE3

When the Send function is executed, this function sends the data which was set in the Detail Mode.

* The function sends the transmission data which was set in the Detail Mode also while the Feature Mode is selected.

Detail Mode / Feature Mode F3 :PAGE3

This function changes the transmission data settings and selection screen display method for displaying the Send Data Monitor.
For details, refer to "Send Data Monitor" (see page 75).

Send Data Monitor / Status Monitor / Normal Monitor F4 :PAGE3

This function changes the monitor display method.
1.Normal Monitor The CEC line monitoring results are displayed.
2.Send Data MonitorThe screen for setting the transmission data is shown at the bottom of the CEC line monitor. (P.75)
3.Status Monitor.............The current status of the VA-1809 is shown at the bottom of the CEC line monitor.

1. Normal Monitor

The CEC line monitoring results are displayed on this screen. Switching between GUI display and HEX display is possible.

GUI display

Display item	Description	Figure
Data number	Running number of the data	(1)
Address	Initiator at left, destination at right ("*" is displayed for data which has been sent from the VA-1809).	(2)
OP CODE	Operand Code Blocks	(3)
PA	Parameter	(4)

* The HEX system is used to display the operand codes or parameters which are not mandatory when they have been received or transmitted.
* When using the ASCII system to display OSD names, OSD strings, etc., a period (".") is used to indicate the setting of values which cannot be displayed.

The intervals between successive commands must be at least 3 bits (7.2 ms). If this distance is not provided between them, it may not be possible for the data to be displayed properly.

HEX display

Display item	Description	Figure
Data number	Running number of the data	(1)
Data type	RX: reception data; TX: transmission data	②
Data	From the left: header block, data block 1 ... data block n	(3)
EOM	Left EOM (end of message); E: available; F: not available	(4)
ACK	Right ACK (acknowledge); A: available; N: not available	(5)

* Up to 64 CEC commands can be displayed at one time.

Listed below are the errors which may be output by the CEC analyzer monitor.

* The errors are indicated within quotation marks on the monitor.

Item	Details
Error Handling	The follower has detected an error indicating that the bit period is less than the rating, and in order to notify the initiator that this error has occurred in the CEC bus, it sends a low level to the bus at a length which is approximately 1.5 times the length of the bit period. (Error Handling) The VA-1809 displays this message when it has detected this operation. (If the low level period exceeds 3.30 ms to 3.35 ms , the VA- 1809 recognizes this as "Error Handling.")
Error Handling Act	This message is displayed when the VA-1809 has executed Error Handling.
Bit Priod Short Error	This message is displayed when the bit period of a CEC command is less than the rating. (This error results when the bit period is less than 2.00 ms to 2.05 ms .)
Bit Priod Long Error	This message is displayed when the bit period of a CEC command is more than the rating. (This error results when the bit period is more than 2.80 ms to 2.85 ms .)
Bus Free Error	This message is displayed when the re-send time is shorter than the one prescribed in the area of the items which are to be checked up to the re-send time of the CEC Compliance Test Item Check command by the VA-1809.
ACK Error	This message is displayed when the ACK is not contained in the CEC command.
Send Bus Busy Error	This message is displayed if the bus remains busy (low level) when an attempt has been made to send a command from the VA-1809.
Send Error Handling	This message is displayed when a command has been sent from the VA-1809 if the 1-bit period is shorter than the rating for some reason and this fact has been posted by the Follower. (If the low level period exceeds 3.30 ms to 3.35 ms , the VA-1809 recognizes this as "Error Handling.")
Send Aribitration Error	This message is displayed when a command has been sent from the VA-1809 if it is deemed that there is an Initiator other than the VA-1809 as well.
Send Ack Error	This message is displayed when a command has been sent from the VA-1809 and ACK was not detected.
Send Impedance Error	This message is displayed when a command has been sent from the VA-1809 if another device has been set to the low level for some reason at a place other than where the bus should be set to the low level.
Send the other Error	This message is displayed when the an error is deemed to have occurred from some reason.
Corrupted bit Error	This message is displayed when an unintended low level has been output to the bus.

2. Send Data Monitor

This function displays the transmission data setting screen.
The setting and selection screen display system (Detail Mode or Feature Mode) is switched using F3. The set data is saved and the saved data is loaded using the Send DATA SAVE and LOAD functions (see PAGE 5).

- Detail Mode

In this mode, the transmission data can be set with numerical values (HEX).
The items to be changed are selected, edited and executed by Rotary Key.

A description of each item is given below.

Item	Description
Destination	The logical address of the transmission destination is specified here.
OP CODE	The operand code is specified here.
Data Len	The parameter data volume is specified here.
Data	The operand block data is specified here.

- Feature Mode

In this mode, the transmission data can be set with command names (GUI). Select the transmission data using Rotary Key or by pressing ENTER.

* The transmission destinations of those transmission commands whose destination can be determined from a multiple number of such destinations can be set using Destination in the Detail Mode or the Destination Set function key (F1 , see PAGE 4) used exclusively by the CEC Analyzer.

Listed below is the data which can be transmitted.

Function item	Transmission data	Description
One Touch Play	Image View On	When the VA-1809 is not emulating a TV set, the Image View On data is sent to the TV set, and the Active Source data is broadcast approximately 200 ms later.
	Text View On	When the VA-1809 is not emulating a TV set, the Text View On data is sent to the TV set, and the Active Source data is broadcast approximately 200 ms later.
Routing Control	Active Source	The Active Source data is broadcast.
	Request Active Source	The Request Active Source data is broadcast.
	Routing Change	When the VA-1809 is emulating two or more devices, the least significant bit of the currently posted Physical Address data is changed, and the Routing Change data is broadcast.
	Set Stream Path	When the VA-1809 is emulating a TV set, the Give Physical Address data is transmitted, and the Set Stream Path data is broadcast to the returned Physical Address.

Function item	Transmission data	Description
System Standby		System Standby is transmitted.
One Touch Record	Record OFF	When the VA-1809 is emulating a TV set, the Record OFF data is transmitted.
	Record ON	When the VA-1809 is emulating a TV set, the Record ON data is transmitted. When it is emulating a device other than a TV set, the Record TV Screen data is transmitted.
System Information	Get Menu Language	When the VA-1809 is not emulating a TV set, the Get Menu Language data is transmitted to the TV set.
	Set Menu Language	When the VA-1809 is emulating a TV set, the Set Menu Language data is transmitted.
	Give Physical Address	The Give Physical Address data is transmitted.
	Report Physical Address	The Report Physical Address data is broadcast.
Deck Control	Give Deck Status ON	The Give Deck Status [ON] data is transmitted.
	Give Deck Status OFF	The Give Deck Status [OFF] data is transmitted.
	Give Deck Status ONCE	The Give Deck Status [ONCE] data is transmitted.
	Skip Forward / Wind Forward	The Deck Control [Skip Forward/Wind Forward] data is transmitted.
	Skip Backwoard / Rewind	The Deck Control [Skip Backward/Rewind] data is transmitted.
	Stop	The Deck Control [Stop] data is transmitted.
	Eject	The Deck Control [Eject] data is transmitted.
	Play Forward	The Play [Play Forward] data is transmitted.
	Play Reverse	The Play [Play Reverse] data is transmitted.
	Play Still	The Play [Play Still] data is transmitted.
	Scan Forward Min Speed	The Play [Scan Forward Min Speed] data is transmitted.
	Scan Forward Medium Speed	The Play [Scan Forward Medium Speed] data is transmitted.
	Scan Forward Max Speed	The Play [Scan Forward Max Speed] data is transmitted.
	Scan Reverse Min Speed	The Play [Scan Reverse Min Speed] data is transmitted.
	Scan Reverse Medium Speed	The Play [Scan Reverse Medium Speed] data is transmitted.
	Scan Reverse Max Speed	The Play [Scan Reverse Max Speed] data is transmitted.
	Slow Forward Min Speed	The Play [Slow Forward Min Speed] data is transmitted.
	Slow Forward Medium Speed	The Play [Slow Forward Medium Speed] data is transmitted.
	Slow Forward Max Speed	The Play [Slow Forward Max Speed] data is transmitted.
	Slow Reverse Min Speed	The Play [Slow Reverse Min Speed] data is transmitted.
	Slow Reverse Medium Speed	The Play [Slow Reverse Medium Speed] data is transmitted.
	Slow Reverse Max Speed	The Play [Slow Reverse Max Speed] data is transmitted.

Function item	Transmission data	Description
Tuner Control	Give Tuner Device Status ON	The Give Tuner Device Status [ON] data is transmitted.
	Give Tuner Device Status OFF	The Give Tuner Device Status [OFF] data is transmitted.
	Give Tuner Device Status Once	The Give Tuner Device Status [ONCE] data is transmitted.
	Select Digital Service 1	The Select Digital Service data is transmitted using Digital Service 1 set by Device Setting as the parameter.
	Select Digital Service 2	The Select Digital Service data is transmitted using Digital Service 2 set by Device Setting as the parameter.
	Select Digital Service 3	The Select Digital Service data is transmitted using Digital Service 3 set by Device Setting as the parameter.
	Tuner Step Decrement	The Tuner Step Decrement data is transmitted.
	Tuner Step Increment	The Tuner Step Increment data is transmitted.
Vendor Specific Commands	Device Vendor ID	The Device Vendor ID data is transmitted using the Vendor ID set by Device Setting as the parameter.
	Give Device Vendor ID	The Give Device Vendor ID is transmitted.
OSD Status Display	Display for default time	The Set OSD String [Display for default time] data is transmitted.
	Display until cleard	The Set OSD String [Display until cleared] data is transmitted.
	Clear previous message	The Set OSD String [Clear previous message] data is transmitted.
	Reserved for future use	The Set OSD String [Reserved for future use] data is transmitted.
Device OSD Name Transfer		The Give OSD Name data is transmitted.
Device Menu Control	Activate	The Menu Request [Activate] data is transmitted.
	Deactivate	The Menu Request [Deactivate] data is transmitted.
	Query	The Menu Request [Query] data is transmitted.

Function item	Transmission data		Description
Device Menu Control	Select	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Select] data for P and the User Control Released data for R.
	Up	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Up] data for P and the User Control Released data for R.
	Down	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Down] data for P and the User Control Released data for R.
	Left	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Left] data for P and the User Control Released data for R.
	Right	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Right] data for P and the User Control Released data for R.
	Right-Up	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Right-Up] data for P and the User Control Released data for R.
	Right-Down	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Right-Down] data for P and the User Control Released data for R.
	Left-Up	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Left-Up] data for P and the User Control Released data for R.
	Left-Down	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Left-Down] data for P and the User Control Released data for R.
	Root Menu	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Root Menu] data for P and the User Control Released data for R.
	Setup Menu	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Setup Menu] data for P and the User Control Released data for R.
	Contents Menu	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Contents Menu] data for P and the User Control Released data for R .
	Favorite Menu	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Favorite Menu] data for P and the User Control Released data for R.
	Exit	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Exit] data for P and the User Control Released data for R.
	$\begin{aligned} & \text { Reserved (} 0 \times 0 \mathrm{E} \text {) } \\ & \quad: \\ & \text { Reserved (} 0 \times 1 \mathrm{~F} \text {) } \end{aligned}$	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R.
	Numbers 0 Numbers 9	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Numbers X] data for P and the User Control Released data for R.

Function item	Transmission data		Description
Device Menu Control	Dot	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Dot] data for P and the User Control Released data for R .
	Enter	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Enter] data for P and the User Control Released data for R.
	Clear	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Clear] data for P and the User Control Released data for R.
	Reserved (0x2D)	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Reserved (0x2E)	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Reserved (0x2F)	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Channel Up	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Channel Up] data for P and the User Control Released data for R.
	Channel Down	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Channel Down] data for P and the User Control Released data for R.
	Previous Channel	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Previous Channel] data for P and the User Control Released data for R .
	Sound Select	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Sound Select] data for P and the User Control Released data for R.
	Input Select	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Input Select] data for P and the User Control Released data for R.
	Display Information	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Display Information] data for P and the User Control Released data for R.
	Help	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Help] data for P and the User Control Released data for R.
	Page Up	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Page Up] data for P and the User Control Released data for R.
	Page Down	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Page Down] data for P and the User Control Released data for R.
	$\begin{aligned} & \text { Reserved }(0 \times 39) \\ & \quad: \\ & \text { Reserved }(0 \times 3 F) \end{aligned}$	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R .

Function item	Transmission data		Description
Device Menu Control	Power	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Power] data for P and the User Control Released data for R.
	Volume Up	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Volume Up] data for P and the User Control Released data for R.
	Volume Down	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Volume Down] data for P and the User Control Released data for R.
	Mute	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Mute] data for P and the User Control Released data for R.
	Play	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Play] data for P and the User Control Released data for R.
	Stop	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Stop] data for P and the User Control Released data for R.
	Pause	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Pause] data for P and the User Control Released data for R.
	Record	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Record] data for P and the User Control Released data for R.
	Rewind	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Rewind] data for P and the User Control Released data for R.
	Fast forward	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Fast Forward] data for P and the User Control Released data for R.
	Eject	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Eject] data for P and the User Control Released data for R .
	Forward	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Forward] data for P and the User Control Released data for R .
	Backward	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Backward] data for P and the User Control Released data for R .
	Reserved (0x4D)	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Reserved (0x4E)	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Reserved (0x4F)	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R.

Function item	Transmission data		Description
Device Menu Control	Angle	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Angle] data for P and the User Control Released data for R.
	Sub picture	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Sub picture] data for P and the User Control Released data for R.
	$\begin{aligned} & \text { Reserved (} 0 \times 52 \text {) } \\ & : \\ & \text { Reserved (} 0 \times 5 \mathrm{~F} \text {) } \end{aligned}$	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Play Function	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Play Function] data for P and the User Control Released data for R.
	Pause-Play Function	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Pause-Play Function] data for P and the User Control Released data for R.
	Record Function	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Record Function] data for P and the User Control Released data for R .
	Pause-Record Function	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Pause-Record Function] data for P and the User Control Released data for R .
	Stop Function	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Stop Function] data for P and the User Control Released data for R.
	Mute Function	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Mute Function] data for P and the User Control Released data for R.
	Restore Volume Function	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Restore Volume Function] data for P and the User Control Released data for R.
	Tune Function	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Tune Function] data for P and the User Control Released data for R.
	Select Disk Function	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Select Disk Function] data for P and the User Control Released data for R .
	Select A/V Input Function	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Select A/V Input Function] data for P and the User Control Released data for R .
	Select Audio Input Function	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Select Audio Input Function] data for P and the User Control Released data for R .
	$\begin{aligned} & \text { Reserved }(0 \times 6 B) \\ & \quad: \\ & \text { Reserved }(0 \times 70) \end{aligned}$	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R .

Function item	Transmission data		Description
Device Menu Control	F1(Blue)	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [F1 (Blue)] data for P and the User Control Released data for R.
	F2(Red)	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [F2 (Red)] data for P and the User Control Released data for R.
	F3(Green)	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [F3 (Green)] data for P and the User Control Released data for R .
	F4(Yellow)	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [F4 (Yellow)] data for P and the User Control Released data for R.
	F5	P\&R / P / R	Transmitted to Active Source is the User Control Pressed [F5] data for P and the User Control Released data for R.
	Reserved (0x76) Reserved (0x7F)	P\&R / P/R	Transmitted to Active Source is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
Remote Control Pass Through	Select	P\&R / P / R	Transmitted is the User Control Pressed [Select] data for P and the User Control Released data for R.
	Up	P\&R / P / R	Transmitted is the User Control Pressed [Up] data for P and the User Control Released data for R .
	Down	P\&R / P / R	Transmitted is the User Control Pressed [Down] data for P and the User Control Released data for R .
	Left	P\&R / P / R	Transmitted is the User Control Pressed [Left] data for P and the User Control Released data for R .
	Right	P\&R / P / R	Transmitted is the User Control Pressed [Right] data for P and the User Control Released data for R .
	Right-Up	P\&R / P / R	Transmitted is the User Control Pressed [Right-Up] data for P and the User Control Released data for R.
	Right-Down	P\&R / P / R	Transmitted is the User Control Pressed [Right-Down] data for P and the User Control Released data for R .
	Left-Up	P\&R / P / R	Transmitted is the User Control Pressed [Left-Up] data for P and the User Control Released data for R.
	Left-Down	P\&R / P / R	Transmitted is the User Control Pressed [Left-Down] data for P and the User Control Released data for R .
	Root Menu	P\&R / P / R	Transmitted is the User Control Pressed [Root Menu] data for P and the User Control Released data for R .
	Setup Menu	P\&R / P/R	Transmitted is the User Control Pressed [Setup Menu] data for P and the User Control Released data for R .
	Contents Menu	P\&R / P / R	Transmitted is the User Control Pressed [Contents Menu] data for P and the User Control Released data for R .
	Favorite Menu	P\&R / P / R	Transmitted is the User Control Pressed [Favorite Menu] data for P and the User Control Released data for R .
	Exit	P\&R / P / R	Transmitted is the User Control Pressed [Exit] data for P and the User Control Released data for R .

Function item	Transmission data		Description
Remote Control Pass Through	Reserved ($0 \times 0 \mathrm{E}$) $:$ Reserved ($0 \times 1 \mathrm{~F}$)	P\&R / P / R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R.
	Numbers 0 Numbers 9	P\&R / P/R	Transmitted is the User Control Pressed [Numbers X] data for P and the User Control Released data for R .
	Dot	P\&R / P / R	Transmitted is the User Control Pressed [Dot] data for P and the User Control Released data for R.
	Enter	P\&R / P/R	Transmitted is the User Control Pressed [Enter] data for P and the User Control Released data for R .
	Clear	P\&R / P / R	Transmitted is the User Control Pressed [Clear] data for P and the User Control Released data for R.
	Reserved (0x2D)	P\&R / P / R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Reserved (0x2E)	P\&R / P / R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Reserved (0x2F)	P\&R / P/R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Channel Up	P\&R / P/R	Transmitted is the User Control Pressed [Channel Up] data for P and the User Control Released data for R .
	Channel Down	P\&R / P / R	Transmitted is the User Control Pressed [Channel Down] data for P and the User Control Released data for R .
	Previous Channel	P\&R / P / R	Transmitted is the User Control Pressed [Previous Channel] data for P and the User Control Released data for R.
	Sound Select	P\&R / P/R	Transmitted is the User Control Pressed [Sound Select] data for P and the User Control Released data for R .
	Input Select	P\&R / P / R	Transmitted is the User Control Pressed [Input Select] data for P and the User Control Released data for R .
	Display Information	P\&R / P / R	Transmitted is the User Control Pressed [Display Information] data for P and the User Control Released data for R .
	Help	P\&R / P/R	Transmitted is the User Control Pressed [Help] data for P and the User Control Released data for R .
	Page Up	P\&R / P / R	Transmitted is the User Control Pressed [Page Up] data for P and the User Control Released data for R.
	Page Down	P\&R / P / R	Transmitted is the User Control Pressed [Page Down] data for P and the User Control Released data for R .
	$\begin{aligned} & \text { Reserved }(0 \times 39) \\ & \quad: \\ & \text { Reserved }(0 \times 3 F) \end{aligned}$	P\&R / P / R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R.
	Power	P\&R / P / R	Transmitted is the User Control Pressed [Power] data for P and the User Control Released data for R.
	Volume Up	P\&R / P/R	Transmitted is the User Control Pressed [Volume Up] data for P and the User Control Released data for R .
	Volume Down	P\&R / P / R	Transmitted is the User Control Pressed [Volume Down] data for P and the User Control Released data for R .
	Mute	P\&R / P / R	Transmitted is the User Control Pressed [Mute] data for P and the User Control Released data for R.

Function item	Transmission data		Description
Remote Control Pass Through	Play	P\&R / P / R	Transmitted is the User Control Pressed [Play] data for P and the User Control Released data for R .
	Stop	P\&R / P / R	Transmitted is the User Control Pressed [Stop] data for P and the User Control Released data for R .
	Pause	P\&R / P / R	Transmitted is the User Control Pressed [Pause] data for P and the User Control Released data for R.
	Record	P\&R / P / R	Transmitted is the User Control Pressed [Record] data for P and the User Control Released data for R .
	Rewind	P\&R / P / R	Transmitted is the User Control Pressed [Rewind] data for P and the User Control Released data for R.
	Fast forward	P\&R / P / R	Transmitted is the User Control Pressed [Fast Forward] data for P and the User Control Released data for R.
	Eject	P\&R / P / R	Transmitted is the User Control Pressed [Eject] data for P and the User Control Released data for R.
	Forward	P\&R / P / R	Transmitted is the User Control Pressed [Forward] data for P and the User Control Released data for R.
	Backward	P\&R / P / R	Transmitted is the User Control Pressed [Backward] data for P and the User Control Released data for R .
	Reserved (0x4D)	P\&R / P/R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Reserved (0x4E)	P\&R / P / R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Reserved (0x4F)	P\&R / P / R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Angle	P\&R / P/R	Transmitted is the User Control Pressed [Angle] data for P and the User Control Released data for R.
	Sub picture	P\&R / P / R	Transmitted is the User Control Pressed [Sub picture] data for P and the User Control Released data for R.
	Reserved (0×52) $:$ Reserved ($0 \times 5 \mathrm{~F}$)	P\&R / P / R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	Play Function	P\&R / P/R	Transmitted is the User Control Pressed [Play Function] data for P and the User Control Released data for R .
	Pause-Play Function	P\&R / P / R	Transmitted is the User Control Pressed [Pause-Play Function] data for P and the User Control Released data for R.
	Record Function	P\&R / P / R	Transmitted is the User Control Pressed [Record Function] data for P and the User Control Released data for R .
	Pause-Record Function	P\&R / P / R	Transmitted is the User Control Pressed [Pause-Record Function] data for P and the User Control Released data for R.
	Stop Function	P\&R / P/R	Transmitted is the User Control Pressed [Stop Function] data for P and the User Control Released data for R.
	Mute Function	P\&R / P / R	Transmitted is the User Control Pressed [Mute Function] data for P and the User Control Released data for R.
	Restore Volume Function	P\&R / P / R	Transmitted is the User Control Pressed [Restore Volume Function] data for P and the User Control Released data for R.

Function item	Transmission data		Description
Remote Control Pass Through	Tune Function	P\&R / P / R	Transmitted is the User Control Pressed [Tune Function] data for P and the User Control Released data for R.
	Select Disk Function	P\&R / P / R	Transmitted is the User Control Pressed [Select Disk Function] data for P and the User Control Released data for R.
	Select A/V Input Function	P\&R / P / R	Transmitted is the User Control Pressed [Select A/V Input Function] data for P and the User Control Released data for R.
	Select Audio Input Function	P\&R / P / R	Transmitted is the User Control Pressed [Select Audio Input Function] data for P and the User Control Released data for R .
	$\begin{aligned} & \text { Reserved (0x6B) } \\ & : \\ & \text { Reserved }(0 \times 70) \end{aligned}$	P\&R / P / R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
	F1 (Blue)	P\&R / P / R	Transmitted is the User Control Pressed [F1 (Blue)] data for P and the User Control Released data for R.
	F2 (Red)	P\&R / P / R	Transmitted is the User Control Pressed [F2 (Red)] data for P and the User Control Released data for R .
	F3 (Green)	P\&R / P / R	Transmitted is the User Control Pressed [F3 (Green)] data for P and the User Control Released data for R.
	F4 (Yellow)	P\&R / P / R	Transmitted is the User Control Pressed [F4 (Yellow)] data for P and the User Control Released data for R .
	F5	P\&R / P / R	Transmitted is the User Control Pressed [F5] data for P and the User Control Released data for R.
	Reserved (0x76) $:$ Reserved (0x7F)	P\&R / P / R	Transmitted is the User Control Pressed [Reserved] data for P and the User Control Released data for R .
Give Device Power Status			The Give Device Power Status data is transmitted.

3. Status Monitor

The current statuses of the VA-1809 are shown on this monitor.
The statuses may be changed by CEC commands from an external source or changed from the VA-1809 main unit. To change them from the main unit, use Rotary Key and ENTER.

Item	Description
POWER STATUS	The currently emulated power status is displayed here.
ACTIVE SOURCE DEVICE	The current active source device is displayed here. *The only change which can be made using [Rotary Key] is to change the device emulated by the VA-1809 to Active Source. The status in which the internal tuner or external source is displayed at Display is established when "TV" is displayed. DISPLAY STATUS RECORDING STATUS The currently emulated display status is displayed here. *his takes effect only when the VA-1809 is emulating a TV set.
DECK STATUS	The currently emulated recording status is displayed here. * This takes effect only when the VA-1809 is emulating a recording device.
LANGUAGE STATUS	The currently emulated deck status is displayed here. $* \quad$This takes effect only when the VA-1809 is emulating a deck device. TUNER DEVICE STATUS
The currently emulated language status is displayed here.	
UEVICE MENU STATUS	The currently emulated tuner status is displayed here. $* \quad$ This takes effect only when the VA-1809 is emulating a TV set.
OSD NAME STATUS	The status of the Ul command transmitted is displayed here.
The currently emulated device OSD name is displayed here.	
The setting is performed using the OSD Name part of [Device	
Info Set] which is accessed by selecting [Emulate Device	
Setting] -> [Device Setting].	

PAGE 4

Destination Set F1 :PAGE4

This function is used to display the devices connected on the current CEC line in the form of a tree using the Logical Address from the Physical Address. (Green indicates the devices emulated by the VA-1809, and pink indicates all other devices.)
The device selected by using Rotary Key or pressing ENTER is set as the Destination.

Emulate Device Set F2 :PAGE4
This function is used to set the status of the VA-1809 when it is to emulate the device set.

(1) Setting the logical addresses

With CEC, the logical addresses must be captured in each device. Any of up to four of these addresses can be captured with the VA-1809.
\rightarrow Use Rotary Key or press ENTER, and enter the checks (ON).
\rightarrow Use Rotary Key to move to Address, and use Rotary Key or press ENTER. [AUTO ADDRESSING MODE/DIRECT ADDRESSING MODE] appears on the right.
\rightarrow Use Rotary Key to select either the AUTO or DIRECT addressing mode, and enter the checks (ON).
\rightarrow F1 ADDRESSING
Press this key to set the addresses.

AUTO ADDRESSING MODE

When AUTO ADDRESSING MODE is checked, the logical addresses are automatically captured according to the categories of the devices which have been set. These addresses are specified as below according to the device category.

Logical Address	DEVICE
00 H	TV
01 H	Recording Device 1
02 H	Recording Device 2
03 H	STB 1
04 H	DVD 1
05 H	Audio System
06 H	STB 2
07 H	STB 3
08 H	DVD 2
09 H	Recording Device 3

Logical Address	DEVICE
OAH	Reserved
OBH	
OCH	
ODH	
OEH	Free Use
OFH	Unregistered (as initiator adderss) Broadcast (as dstination address)

DIRECT ADDRESSING MODE

When DIRECT ADDRESSING MODE is checked, the data which has been set is forcibly allocated to the logical addresses.

(2) DEVICE SETTING

This function is used to set the status of the device when the device is to be emulated by the VA-1809.

\rightarrow F2 DEVICE SETTING

The setting screen now appears.
Listed below are the items which can be set.

1. Support OP CODE
2. LANGUAGE $\quad(\rightarrow$ F1 $) \quad \mathrm{P} .91$
3. Digital Service $\quad(\rightarrow$ F2 $) \quad$ P. 98
4. DEVICE Information (\rightarrow F3) P. 98

Data can be saved or loaded using DEVICE STATUS SAVE or LOAD.
\rightarrow F4 DEVICE STATUS SAVE
Press this key to save the data which has been set.
\rightarrow SHIFT NEXT \rightarrow F1 DEVICE STATUS LOAD
Press these keys to load the data which has been saved.

1. Support OP CODE

OP CODE	Description
Active Source	This supports the reception of Active Source.
Image View On	This supports the reception of Image View On.
Text View On	This supports the reception of Text View On.
Request Active Source	This supports the reception of Request Active Source.
Routing Change	This supports the reception of Routing Change.
Routing Information	This supports the reception of Routing Information.
Set Stream Path	This supports the reception of Set Stream Path.
Standby	This supports the reception of Standby.
Record Off	This supports the reception of Record Off.
Record On	This supports the reception of Record On.
Record Status	This supports the reception of Record Status.
Record TV Screen	This supports the reception of Record TV Screen.
Give Menu Language	This supports the reception of Give Menu Language.
Give Physical Address	This supports the reception of Give Physical Address.
Report Physical Address	This supports the reception of Report Physical Address
Set Menu Language	This supports the reception of Set Menu Language.
Deck Control	This supports the reception of Deck Control.
Deck Status	This supports the reception of Deck Status.
Give Deck Status	This supports the reception of Give Deck Status.
Play	This supports the reception of Play.

OP CODE	Description
Give Tuner Device Status	This supports the reception of Give Tuner Device Status.
Select Digital Service	This supports the reception of Select Digital Service.
Tuner Device Status	This supports the reception of Tuner Device Status.
Tuner Step Decrement	This supports the reception of Tuner Step Decrement.
Tuner Step Increment	This supports the reception of Tuner Step Increment.
Device Vendor ID	This supports the reception of Device Vendor ID.
Give Device Vendor ID	This supports the reception of Give Device Vendor ID.
Vendor Command	This supports the reception of Vendor Command.
Vendor Remote Button Down	This supports the reception of Vendor Remote Button Down.
Vendor Remote Button Up	This supports the reception of Vendor Remote Button Up.
Set OSD String	This supports the reception of Set OSD String.
Give OSD Name	This supports the reception of Give OSD Name.
Set OSD Name	This supports the reception of Set OSD Name.
Menu Request	This supports the reception of Menu Request.
Menu Status	This supports the reception of Menu Status.
User Control Pressed	This supports the reception of User Control Pressed.
User Control Released	This supports the reception of User Control Released.
Give Device Power Status	This supports the reception of Give Device Power Status.
Report Device Power Status	This supports the reception of Report Device Power Status.

2. LANGUAGE SET F1

Code	Language	Code	Language
aar	Afar	abk	Abkhazian
ace	Achinese	ach	Acoli
ada	Adangme	ady	Adyghe; Adygei
afa	Afro-Asiatic (Other)	afh	Afrihili
afr	Afrikaans	ain	Ainu
aka	Akan	akk	Akkadian
alb (sqi)	Albanian	ale	Aleut
alg	Algonquian languages	alt	Southern Altai
amh	Amharic	ang	English, Old (ca.450-1100)
anp	Angika	apa	Apache languages
ara	Arabic	arc	Aramaic
arg	Aragonese	arm (hye)	Armenian
arn	Araucanian	arp	Arapaho
art	Artificial (Other)	arw	Arawak
asm	Assamese	ast	Asturian; Bable
ath	Athapascan languages	aus	Australian languages
ava	Avaric	ave	Avestan
awa	Awadhi	aym	Aymara
aze	Azerbaijani		

Code	Language	Code	Language
doi	Dogri	dra	Dravidian (Other)
dsb	Lower Sorbian	dua	Duala
dum	Dutch, Middle (ca.1050-1350)	dut (nld)	Dutch; Flemish
dyu	Dyula	dzo	Dzongkha
efi	Efik	egy	Egyptian (Ancient)
eka	Ekajuk	ell (gre)	Greek, Modern (1453-)
elx	Elamite	eng	English
enm	English, Middle (1100-1500)	epo	Esperanto
est	Estonian	eus (baq)	Basque
ewe	Ewe	ewo	Ewondo
fan	Fang	fao	Faroese
fas (per)	Persian	fat	Fanti
fij	Fijian	fil	Filipino; Pilipino
fin	Finnish	fiu	Finno-Ugrian (Other)
fon	Fon	fra (fre)	French
fre (fra)	French	frm	French, Middle (ca.1400-1600)
fro	French, Old (842-ca.1400)	frr	Northern Frisian
frs	Eastern Frisian	fry	Western Frisian
ful	Fulah	fur	Friulian
gaa	Ga	gay	Gayo
gba	Gbaya	gem	Germanic (Other)
geo (kat)	Georgian	ger (deu)	German
gez	Geez	gil	Gilbertese
gla	Gaelic; Scottish Gaelic	gle	Irish
glg	Galician	glv	Manx
gmh	German,Middle High (ca.1050-1500)	goh	German, Old High (ca.750-1050)
gon	Gondi	gor	Gorontalo
got	Gothic	grb	Grebo
grc	Greek, Ancient (to 1453)	gre (ell)	Greek, Modern (1453-)
grn	Guarani	gsw	Alemanic; Swiss German
guj	Gujarati	gwi	Gwich'in
hai	Haida	hat	Haitian; Haitian Creole
hau	Hausa	haw	Hawaiian
heb	Hebrew	her	Herero
hil	Hiligaynon	him	Himachali
hin	Hindi	hit	Hittite
hmn	Hmong	hmo	Hiri Motu
hrv (scr)	Croatian	hsb	Upper Sorbian
hun	Hungarian	hup	Hupa
hye (arm)	Armenian		

Code	Language	Code	Language
iba	Iban	ibo	Igbo
ice (isl)	Icelandic	ido	Ido
iii	Sichuan Yi	ijo	Ijo
iku	Inuktitut	ile	Interlingue
ilo	Iloko	ina	Interlingua (International Auxiliary Language Association)
inc	Indic (Other)	ind	Indonesian
ine	Indo-European (Other)	inh	Ingush
ipk	Inupiaq	ira	Iranian (Other)
iro	Iroquoian languages	isl (ice)	Icelandic
ita	Italian		
jav	Javanese	jbo	Lojban
jpn	Japanese	jpr	Judeo-Persian
jrb	Judeo-Arabic		
kaa	Kara-Kalpak	kab	Kabyle
kac	Kachin	kal	Kalaallisut; Greenlandic
kam	Kamba	kan	Kannada
kar	Karen	kas	Kashmiri
kat (geo)	Georgian	kau	Kanuri
kaw	Kawi	kaz	Kazakh
kbd	Kabardian	kha	Khasi
khi	Khoisan (Other)	khm	Khmer
kho	Khotanese	kik	Kikuyu; Gikuyu
kin	Kinyarwanda	kir	Kirghiz
kmb	Kimbundu	kok	Konkani
kom	Komi	kon	Kongo
kor	Korean	kos	Kosraean
kpe	Kpelle	krc	Karachay-Balkar
krl	Karelian	kro	Kru
kru	Kurukh	kua	Kuanyama; Kwanyama
kum	Kumyk	kur	Kurdish
kut	Kutenai		
lad	Ladino	lah	Lahnda
lam	Lamba	lao	Lao
lat	Latin	lav	Latvian
lez	Lezghian	lim	Limburgan; Limburger; Limburgish
lin	Lingala	lit	Lithuanian
Iol	Mongo	loz	Lozi
Itz	Luxembourgish; Letzeburgesch	lua	Luba-Lulua
lub	Luba-Katanga	lug	Ganda
lui	Luiseno	lun	Lunda
luo	Luo (Kenya and Tanzania)	lus	lushai

Code	Language	Code	Language
mac (mkd)	Macedonian	mad	Madurese
mag	Magahi	mah	Marshallese
mai	Maithili	mak	Makasar
mal	Malayalam	man	Mandingo
mao (mri)	Maori	map	Austronesian (Other)
mar	Marathi	mas	Masai
may (msa)	Malay	mdf	Moksha
mdr	Mandar	men	Mende
mga	Irish, Middle (900-1200)	mic	Mi'kmaq; Micmac
min	Minangkabau	mis	Miscellaneous languages
mkd (mac)	Macedonian	mkh	Mon-Khmer (Other)
mlg	Malagasy	mlt	Maltese
mnc	Manchu	mni	Manipuri
mno	Manobo languages	moh	Mohawk
mol	Moldavian	mon	Mongolian
mos	Mossi	mri (mao)	Maori
msa (may)	Malay	mul	Multiple languages
mun	Munda languages	mus	Creek
mwl	Mirandese	mwr	Marwari
mya (bur)	Burmese	myn	Mayan languages
myv	Erzya		
nah	Nahuat	nai	North American Indian
nap	Neapolitan	nau	Nauru
nav	Navajo; Navaho	nbl	Ndebele, South; South Ndebele
nde	Ndebele, North; North Ndebele	ndo	Ndonga
nds	Low German; Low Saxon; German, Low; Saxon, Low	nep	Nepali
new	Newari; Nepal Bhasa	nia	Nias
nic	Niger-Kordofanian (Other)	niu	Niuean
nld (dut)	Dutch; Flemish	nno	Norwegian Nynorsk; Nynorsk, Norwegian
nob	Norwegian Bokmal; Bokmal, Norwegian	nog	Nogai
non	Norse, Old	nor	Norwegian
nqo	N'ko	nso	Northern Sotho, Pedi; Sepedi
nub	Nubian languages	nwc	Classical Newari; Old Newari; Classical Nepal Bhasa
nya	Chichewa; Chewa; Nyanja	nym	Nyamwezi
nyn	Nyankole	nyo	Nyoro
nzi	Nzima		
-			
oci	Occitan (post 1500); Provencal	oji	Ojibwa
ori	Oriya	orm	Oromo
osa	Osage	oss	Ossetian; Ossetic

Code	Language	Code	Language
ota	Turkish, Ottoman (1500-1928)	oto	Otomian languages
paa	Papuan (Other)	pag	Pangasinan
pal	Pahlavi	pam	Pampanga
pan	Panjabi; Punjabi	pap	Papiamento
pau	Palauan	peo	Persian, Old (ca.600-400 B.C.)
per (fas)	Persian	phi	Philippine (Other)
phn	Phoenician	pli	Pali
pol	Polish	pon	Pohnpeian
por	Portuguese	pra	Prakrit languages
pro	Provencal, Old (to 1500)	pus	Pushto
que	Quechua		
raj	Rajasthani	rap	Rapanui
rar	Rarotongan	roa	Romance (Other)
roh	Raeto-Romance	rom	Romany
ron (rum)	Romanian	rum (ron)	Romanian
run	Rundi	rup	Aromanian; Arumanian; Macedo-Romanian
rus	Russian		
sad	Sandawe	sag	Sango
sah	Yakut	sai	South American Indian (Other)
sal	Salishan languages	sam	Samaritan Aramaic
san	Sanskrit	sas	Sasak
sat	Santali	scc (srp)	Serbian
scn	Sicilian	Sco	Scots
scr (hrv)	Croatian	sel	Selkup
sem	Semitic (Other)	sga	Irish, Old (to 900)
sgn	Sign Languages	shn	Shan
sid	Sidamo	sin	Sinhala; Sinhalese
sio	Siouan languages	sit	Sino-Tibetan (Other)
sla	Slavic (Other)	slk (slo)	Slovak
slo (slk)	Slovak	slv	Slovenian
sma	Southern Sami	sme	Northern Sami
smi	Sami languages (Other)	smj	Lule Sami
smn	Inari Sami	smo	Samoan
sms	Skolt Sami	sna	Shona
snd	Sindhi	snk	Soninke
sog	Sogdian	som	Somali
son	Songhai	sot	Sotho, Southern
spa	Spanish; Castilian	sqi (alb)	Albanian
srd	Sardinian	srn	Sranan Togo
srp (scc)	Serbian	srr	Serer
ssa	Nilo-Saharan (Other)	ssw	Swati

3. DIGITAL SERVICE SET
 F2

Digital Service 1	Digital Broadcast System1
	Service Identification1
Digital Service 2	Digital Broadcast System2
	Service Identification2
Digital Service 3	Digital Broadcast System3
	Service Identification3

Digital Broadcast System ARIB / ATSC / DVB

Service Identification
6Byte DATA

4. DEVICE INFO SET
 F3

Vendor ID	3-byte data
OSD NAME	ASCII max. 8 bytes

Response EDIT F3 :PAGE4

This function is used to set the response to the received data. If the setting is not established, the response will be as per the CEC standard. It is possible to give a response which is an exception to the setting or to give no response using this setting.

Listed below are the items which can be set.

Item	Description
OP CODE	Operand code with which the setting takes effect
Data Len	Data volume with which the setting takes effect
Data	Data with which the setting takes effect
Res OP CODE	Operand code which is returned
Res Data Len	Data volume which is returned
Res Data	Data which is returned
Enable	Whether to give a response and the destination when a response is to be given

The settings take effect when OP CODE, Data Len and Data above match the received data. When Enable is checked, the Res- data is returned.
\rightarrow F1 Cleate
Press this to create up to ten return setting items.

\rightarrow F2 Delete

Press this to delete a return setting item.
\rightarrow F3 SAVE
Press this to save the data which has been set.
\rightarrow F4 LOAD
Press this to load the data which has been saved.

Line monitor / Destination monitor F4 :PAGE4

This is used to switch between line monitor and destination monitor. At the line monitor setting, all the CEC line data is displayed, and at the destination monitor setting, only the data sent by the VA-1809 and data received (data sent to the VA-1809) are displayed.

>> PAGE 5

Send DATA SAVE

This is used to store the transmission data which was set on the Send Data Monitor (see PAGE 3). The data is stored inside the VA main unit. (It cannot be stored on a card.)

Send DATA LOAD F2 :PAGE5

This is used to load the transmission data which has been saved. This data is set on the Send Data Monitor (see PAGE 3).

4.17 CEC Compliance Test Item Check

The HDMI standard mandates compliance testing in order to prevent connectivity problems and other trouble. Using the CEC Compliance Test Item Check function item of the VA-1809, it is possible to perform protocol layer tests among the CEC compliance tests.
If the specifications of the device under test (DUT) are first set on the CDF (Capabilities Declaration Form), it is possible to select the items to be tested.

* This is an optional function. For further details, contact a sales representative.

OSD non-display status \rightarrow ANALYZE
\rightarrow Use Rotary Key to select and execute the CEC compliance test item checks.
CEC COMPLIANCE TEST
CEC Compliance Test Item Check

Description of function keys used exclusively for the CEC compliance test item checks

* No functions keys which are used for the CEC compliance test item checks are shared with other functions: only exclusive-use function keys are used.
OSD non-display status \rightarrow ANALYZE
\rightarrow Use Rotary Key to select and execute the CEC compliance test item checks.

CEC Compliance Test Item Check

\rightarrow F1 Clear
This is used to initialize the display of the tested items.
\rightarrow F2 CDF SET
This is used to set the CDF (see page 104).
\rightarrow F3 CDF File SAVE
This is used to save the CDF data.
To save the data on a card, press New Card Number. In a case like this, the name of the data saved will be cdfxxx.cdf (where "xxx" is a number which does not exist on the card).
\rightarrow F4 CDF File LOAD
This is used to load the CDF data.
Use Rotary Key to select and execute the test items.
Display the test execution screen.

Before displaying the test execution screen, ensure that the VA-1809 and device under test (DUT) are connected. (The DUT address is captured as soon as the test execution screen appears.)

(1) Executing the tests

* Before displaying the test execution screen, ensure that the VA-1809 and device under test (DUT) are connected.

The intervals between successive commands must be at least 3 bits (7.2 ms). If this distance is not provided between them, the tests may not be performed properly.

\rightarrow F1 ALL ID TEST

This is used to select and perform only those tests which are supported for the DUT and which have been set by CDF.

\rightarrow F2 Rotary Key ONE ID TEST

This is used to test only the items which have been selected.

- Display which appears during testing

The tests are not performed completely automatically. The measurements which can be conducted by the main unit (response command present/absent and time measurements) are conducted automatically. In addition, it is necessary to check the connection methods and displayed information. If checking is required, the check items will be displayed on OSD so input OK (F 1) or NG (F 2), and proceed with the tests. When the tests are completed, the result (PASS or FAIL) is displayed.

* If the CDF settings (such as Device Type) have not been performed properly, the tests may not be performed.

For details on the tests, refer to "(3) Test details" (see page 109).

This is used to initialize the displays of the tested items.

(2) CDF SETTING

\rightarrow F2 CDF SET
This is used to display the CDF setting screen.
Listed below are the items which can be set.

- Device Type / CEC Features / CECMessages Supported
- LANGUAGE $\quad(\rightarrow$ F1 $)$ Same as 2. LANGUAGE in DEVICE SETTING. (P.91)
- Digital Service (\rightarrow F2) Same as 3. Digital Service in DEVICE SETTING.
- DEVICE Information $(\rightarrow$ F3) Same as 4. DEVICE Information in DEVICE

SETTING.

- UI Command $\quad(\rightarrow$ F4) P. 108

The set data is saved and the saved data is loaded using the CDF File SAVE and LOAD functions.

Device Type / CEC Features / CECMessages Supported

Item		Selection options
Device Type		Standard TV / TV with an HDMI Output / Recording Device / STB / DVD / Audio System / CEC Switch
CEC Features		
CEC Message		
One Touch Play		(Mandatory Feature)
Can DUT be brought out of Standby?		Support Yes / No
-> Does DUT(TV) have an internal source?		
-> Does DUT(TV) have a text mode?		
	Active Source	Send Support Yes / No Receive Support Yes / No
	Image View On	
	Text View On	
Routing Control		(Mandatory Feature)
	Request Active Source	Send Support Yes / No Receive Support Yes / No
	Routing Change	
	Routing Information	
	Set Stream Path	
Standby		(Mandatory Feature)
	Standby	Send Support Yes / No Receive Support Yes / No
One Touch Record		Support Yes / No
-> Does DUT(TV) have an internal source?		Support Yes / No
	Record Off	Send Support Yes / No Receive Support Yes / No
	Record On	
	Record Status	
	Record TV Screen	
System Information		(Mandatory Feature)
-> Language Supported		(Set using Language Set F1
	Give Menu language	Send Support Yes / No Receive Support Yes / No
	Give Physical Address	
	Polling Message	
	Report Physical Address	
	Set Menu Language	

CEC Features		Selection options
	CEC Message	
Vendor Specific		Support Yes / No
	Device Vendor ID	Send Support Yes / No Receive Support Yes / No
	Give Device Vendor ID	
	Vendor Command	
	Vendor Remote Button Down	
	Vendor Remote Button Up	
-> Vendor ID used by the DUT		(Set using Device Info Set F3)
OSD Status Display		Support Yes / No
	Set OSD String	Send Support Yes / No Receive Support Yes / No
Device OSD Transfer		Support Yes / No
	Give OSD Name	Send Support Yes / No Receive Support Yes / No
	Set OSD Name	
-> Device OSD Name		(Set using Device Info Set F3)
Device Menu Control		Support Yes / No
	Menu Request	Send Support Yes / No Receive Support Yes / No
	Menu Status	
Remote Control Passthrough		Support Yes / No
	User Control Pressed	Send Support Yes / No Receive Support Yes / No
	User Control Released	
-> Supported Operation Ids as Initiator?		(Set using UI Command Set F4)
-> Supported Operation Ids as Follower?		
Power Status		Support Yes / No
	Give Device Power Status	Send Support Yes / No Receive Support Yes / No
	Report Device Power Status	

- UI Command Set F4

Sellect	Up	Down	Left
Right	Right-Up	Right-Down	Left-Up
Left-Down	Root Menu	Setup Menu	Contents Menu
Favorite Menu	Exit	Reserved (0x0E)	Reserved (0x0F)
Reserved (0x10)	Reserved (0x11)	Reserved (0x12)	Reserved (0x13)
Reserved (0x14)	Reserved (0x15)	Reserved (0x16)	Reserved (0x17)
Reserved (0x18)	Reserved (0x19)	Reserved (0x1A)	Reserved (0x1B)
Reserved (0x1C)	Reserved (0x1D)	Reserved (0x1E)	Reserved (0x1F)
Numbers 0	Numbers 1	Numbers 2	Numbers 3
Numbers 4	Numbers 5	Numbers 6	Numbers 7
Numbers 8	Numbers 9	Dot	Enter
Clear	Reserved (0x2D)	Reserved (0x2E)	Reserved (0x2F)
Channel Up	Channel Down	Previous Channel	Sound Select
Input Select	Display Information	Help	Page Up
Page Down	Reserved (0x39)	Reserved (0x3A)	Reserved (0x3B)
Reserved (0x3C)	Reserved (0x3D)	Reserved (0x3E)	Reserved (0x3F)
Power	Volume Up	Volume Down	Mute
Play	Stop	Pause	Record
Rewind	Fast forward	Eject	Forward
Backward	Reserved (0x4D)	Reserved (0x4E)	Reserved (0x4F)
Angle	Sub picture	Reserved (0x52)	Reserved (0x53)
Reserved (0x54)	Reserved (0x55)	Reserved (0x56)	Reserved (0x57)
Reserved (0x58)	Reserved (0x59)	Reserved (0x5A)	Reserved (0x5B)
Reserved (0x5C)	Reserved (0x5D)	Reserved (0x5E)	Reserved (0x5F)
Play Function	Pause-Play Function	Record Function	Pause-Record Function
Stop Function	Mute Function	Restore Volume Function	Tune Function
Select Disk Function	Select A/V Input Function	Select Audio Input Function	Reserved (0x6B)
Reserved (0x6C)	Reserved (0x6D)	Reserved (0x6E)	Reserved (0x6F)
Reserved (0x70)	F1 (Blue)	F2 (Red)	F3 (Green)
F4 (Yellow)	F5	Reserved (0x76)	Reserved (0x77)
Reserved (0x78)	Reserved (0x79)	Reserved (0x7A)	Reserved (0x7B)
Reserved (0x7C)			

(3) Test details

Listed below is the sequence in which the CEC compliance test item checks are performed by the VA-1809.

* "DUT" denotes device under test; "TE" denotes the VA-1809 (test equipment).

Item	Required Test Method	Pass criateria
Signaling and Bit Timings		
Connect the HDMI input of DUT to the output of TE if DUT is a TV set or connect the HDMI output of DUT to the input of TE if DUT is any other device. Then conduct the following tests.		
8.2-1	Change the low period of the start bit to 3.5, 3.7 and 3.9 ms , and send the DUT <Abort> message.	DUT sends ACK. DUT sends <Feature Abort>.
8.2-2	Change the high period of the start bit to $0.6,0.8$ and 1.0 ms , and send the DUT <Abort> message.	DUT sends ACK. DUT sends <Feature Abort>.
8.2-3	Change the low period of one bit to $0.4,0.6$ and 0.8 ms , and send the DUT <Abort> message.	DUT sends ACK. DUT sends <Feature Abort>.
8.2-4	Change the high period of one bit to 1.45, 1.8 and 2.15 ms , and send the DUT <Abort> message.	DUT sends ACK. DUT sends <Feature Abort>.
8.2-5	Change the low period of the zero bit to 1.3, 1.5 and 1.7 ms , and send the DUT <Abort> message.	DUT sends ACK. DUT sends <Feature Abort>.
8.2-6	Change the high period of the start bit to $0.55,0.9$ and 1.25 ms , and send the DUT <Abort> message.	DUT sends ACK. DUT sends <Feature Abort>.
Frame Communication		
Connect the HDMI input of DUT to the output of TE if DUT is a TV set or connect the HDMI output of DUT to the input of TE if DUT is any other device (including a CEC switch). Then conduct the following tests.		
9.1-1	Send the DUT <Abort> message. * If DUT does not send ACK, the message is resent during the period from 7.2 ms to 12 ms . It will be resent for a maximum of 5 times.	DUT sends ACK'0'.
9.1-2	Send the <Abort> message to a device other than DUT.	DUT does not send ACK'0'.
9.1-3	Broadcast <Report Physical Address>. * If DUT does not send ACK, the message is resent during the period from 7.2 ms to 12 ms . It will be resent for a maximum of 5 times.	DUT sends ACK'1'.
9.2-1	Send the DUT <Abort> message.	DUT sends <Feature Abort> from the appropriate logical address.
9.2-2	[When DUT is a CEC switch] Broadcast a <Routing Information> [1.0.0.0].	[When DUT is a CEC switch] DUT broadcasts <Routing Information>.
	[When DUT is not a CEC switch] Send <Give Physical Address> to DUT.	[When DUT is not a CEC switch] DUT broadcasts <Report Physical Address>.
9.3-1	Send the <Abort> message to DUT.	DUT sends <Feature Abort>.
	Do not send ACK'0' to Header Block of the returned <Feature Abort>.	DUT sends <Feature Abort> five times with an interval of at least 3 nominal data bits between them.
9.3-2	Send the DUT <Abort> message.	DUT sends <Feature Abort>.
	Do not send ACK'0' to Data Block of the returned <Feature Abort>.	DUT sends <Feature Abort> five times with an interval of at least 3 nominal data bits between them.

Item	Required Test Method	Pass criateria
9.3-3	[When DUT is a CEC switch]	[When DUT is a CEC switch]
	Broadcast <Routing Information> [1.0.0.0].	DUT broadcasts <Routing Information>.
	Do not send ACK'1' in response to the returned <Broadcast message>.	DUT sends the Broadcast message five times with an interval of at least 3 nominal data bits between them.
	[When DUT is a not CEC switch]	[When DUT is a not CEC switch]
	Send Give Physical Address to DUT.	DUT broadcasts <Report Physical Address>.
	Do not send ACK'1' in response to the returned Broadcast message.	DUT sends the Broadcast message five times with an interval of at least 3 nominal data bits between them.
9.3-4	Send the DUT <Abort> message.	DUT sends <Feature Abort>.
	Set the bus to Low impedance while DUT is sending High impedance.	DUT leaves an interval longer than 3 nominal data bit periods and send <Feature Abort> five times between them.
9.4-1	Set DUT to Active Source. Send <Active Source> with no [Physical Address]. Send Request Active Source.	DUT sends <Active Source>. (The commands of <Active Source> with no [Physical Address] must be ignored.)
9.5-1	Send the DUT <Abort> message. However, insert the destroyed bit into bit 3 of the first data block before sending the message.	DUT outputs a low bit with a length 1.4 to 1.6 times (3.4 ms to 3.8 ms) the nominal data bit period. DUT does not send <Feature Abort>.
9.6-1	Send the DUT <Abort> message.	DUT returns <Feature Abort>.
	Forcibly set to low the CEC line in the 0.8 ms period 3.5 ms after starting the transmission in response to the returned Feature Abort. (Send low impedance as the Start Bit.)	When DUT detects low, arbitration must be lost and the transmission of the current message must stop. DUT waits for a period of at least 5 bits and then resends the message.
9.6-2	Send the DUT <Abort> message.	DUT returns <Feature Abort>.
	DUT sends low impedance in the high impedance part while it is sending the source address.	When DUT detects low, arbitration must be lost and the transmission of the current message stops. DUT waits for a period of at least 5 bits and then resends the message.
9.7-1	Send the DUT <Abort> message.	DUT returns <Feature Abort>.
	Forcibly set to low the CEC line in the 0.8 ms period 3.5 ms after starting the transmission in response to the returned Feature Abort. (Send low impedance to the Start Bit.)	When DUT detects low, arbitration must be lost and the transmission of the current message stops. DUT waits for a period of at least 5 bits and then resends the message.
9.7-2	Send the DUT <Abort> message.	DUT waits for a period of at least 5 bits and then resends the <Feature Abort>.
9.7-3	Execute the One Touch Play feature or Remote Control Pass Through feature using DUT.	After sending the first message, DUT waits 7 nominal data bit period before sending the next message.

Item	Required Test Method	Pass criateria
Device Installation And Addressing		
Items 10.X.1.1 pertain to the testing of regular TV sets, items 10.X.1.2 pertain to the testing of TV set with HMDI outputs, and items 10.X. 2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 110) are performed. When DUT is a regular TV set, set TE to Repeater, and connect the HDMI input of DUT to the output of TE; when DUT is a device other than a regular TV set, connect the HMDI output of DUT to the input of TE; and then perform the tests.		
10.1.1.1-1	Connect DUT to the TE output. Send a <Give Physical Address> to the DUT.	The DUT broadcasts a <Report Physical Address> [0.0.0.0].
10.1.1.2-1	Allocate Physical Address [2.0.0.0] to DUT. Disconnect DUT from TE. Allocate Physical Address [1.0.0.0] to DUT.	The DUT broadcasts a <Report Physical Address> [1.0.0.0].
10.1.2-1	Connect DUT to the input of TE. Allocate Physical Address [2.0.0.0] to DUT. Disconnect DUT from TE. Allocate Physical Address [1.0.0.0] to DUT.	The DUT broadcasts a <Report Physical Address> [1.0.0.0].
10.1.2-2	Connect DUT to the input of TE. Allocate Physical Address [1.0.0.0] to DUT. Disconnect DUT from TE. Allocate Physical Address [2.3.4.5] to DUT.	The DUT broadcasts a <Report Physical Address> [2.3.4.5].
10.2.1.1-1	Send the polling message to logical address 0 .	DUT must return ACK.
10.2.1.2-1	Set Logical Address of TE to 0 . Allocate physical address [2.0.0.0] to DUT. Disconnect DUT from TE. Allocate Physical Address [1.0.0.0] to DUT.	<Report Physical Address> [1.0.0.0] is broadcast.
10.2.1.2-2	Allocate Physical Address [1.0.0.0] to DUT. Return ACK in response to the polling message which was sent by DUT to logical address 14.	DUT captures the logical address with an unregistered address (15). Also, <Report Physical Address is broadcast.
10.2. 2-1	Connect DUT to the input of TE. Disconnect the connection temporarily, and then re-establish the connection.	DUT sends the polling message to the recording device logical address, and captures the logical address. Also, <Report Physical Address> is broadcast.
10.2.2-2	Disconnect DUT from the input of TE. Ensure that the logical address captured by DUT in 10.2.2-1 is forcibly captured by TE. Connect DUT to the input of TE.	DUT sends the polling message to the recording device logical address, and captures the second logical address. Also, <Report Physical Address> is broadcast.
10.2.2-3	Disconnect DUT from the input of TE. Ensure that the logical address captured by DUT in 10.2.2-2 is forcibly captured by TE. Connect DUT to the input of TE.	DUT sends the polling message to the recording device logical address, and captures the third logical address. Also, <Report Physical Address> is broadcast.

Item	Required Test Method	Pass criateria
10.2.3-1	Connect DUT to the input of TE. Disconnect the connection temporarily, and then re-establish the connection.	DUT sends the polling message to the DVD logical address, and captures the logical address. Also, <Report Physical Address> is broadcast.
10.2.3-2	Disconnect DUT from the input of TE. Ensure that the logical address captured by DUT in 10.2.3-1 is forcibly captured by TE. Connect DUT to the input of TE.	DUT sends the polling message to the DVD logical address, and captures the second logical address. Also, <Report Physical Address> is broadcast.
10.2. 4-1	Connect DUT to the input of TE. Disconnect the connection temporarily, and then re-establish the connection.	DUT sends the polling message to the STB logical address, and captures the logical address. Also, <Report Physical Address> is broadcast.
10.2.4-2	Disconnect DUT from the input of TE. Ensure that the logical address captured by DUT in 10.2.4-1 is forcibly captured by TE. Connect DUT to the input of TE.	DUT sends the polling message to the STB logical address, and capture the second logical address. Also, <Report Physical Address> is broadcast.
10.2.4-3	Disconnect DUT from the input of TE. Ensure that the logical address captured by DUT in $10.2 .4-2$ is forcibly captured by TE. Connect DUT to the input of TE.	DUT sends the polling message to the STB logical address, and captures the third logical address. Also, <Report Physical Address> is broadcast.
10.2. 5-1	Disconnect the connection temporarily, and then re-establish the connection.	DUT sends the polling message to the audio system logical address, and captures the logical address. Also, <Report Physical Address> is broadcast.

Item	Required Test Method	Pass criateria
One Touch Play Items 11.1 pertain to the TV set tests, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.		
Items 11.1 pertain to the TV set tests. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.		
11.1.1-1	Change the logical addresses of TE to $1,3,4,5$, and repeat the following steps. Display the internal preset or some other external source on DUT. Send <Image View ON> from TE. About 200ms later, broadcast Active Source from TE.	The DUT display switches to the HDMI input port connected on TE.
11.1.1-2	Change the logical addresses of TE to 1, 3, 4, 5, and repeat the following steps. Display the internal preset or some other external source on DUT. Send <Text View ON> from TE. About 200 ms later, broadcast Active Source from TE.	The DUT display switches to the HDMI input port connected on TE.
11.1.1-3	Set DUT to the standby status. Send <Image View ON> from TE.	The power of DUT is turned on.
11.1.1-4	Set DUT to the standby status. Send <Text View ON> from TE.	The power of DUT is turned on.
11.1.1-5	Display the internal preset or some other external source on DUT. Also display the DUT menu. Send <Image View ON> from TE.	The DUT menu remains on the screen.
11.1.1-6	Display the internal preset or some other external source on DUT. Also display the DUT menu. Send <Text View ON> from TE.	The DUT menu is cleared from the screen.
11.1.1-7	Display the internal preset or some other external source on DUT. Send <Image View ON> from TE (logical address 15).	DUT ignores the message.
11.1.1-8	Display the internal preset or some other external source on DUT. Send <Text View ON> from TE (logical address 15).	DUT ignores the message.
11.1.1-9	Send <Active Source> from TE to DUT. (Let DUT display the external source.) Next, select the settings in such a way that the internal source is displayed on DUT.	DUT sends <Active> Source [0.0.0.0].
11.1.1-10	Set DUT to the Text Mode. Send <Image View On> from TE.	DUT clears the text display.
11.1.1-11	Set DUT to the Text Mode. Send <Text View On> from TE.	DUT clears the text display.

Item	Required Test Method	Pass criateria
Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.		
11.2.1-1	Execute the One Touch Play feature from DUT to TE.	DUT sends <Active Source> after sending <lmage View On> or <Text View On>.
11.2.1-2	Set DUT to the play status using <Active Source>. Broadcast <Active Source> from TE (logical address 15).	DUT ignores <Active Source> and continues to play.
Routing Control Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.		
Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.		
11.1.2-1	Broadcast <Report Physical Address> [1.1.0.0] from TE (logical address 3). Broadcast <Report Physical Address> [1.2.0.0] from TE (logical address 4). Select one of the two devices above on the DUT menu.	<Set Stream Path> is sent from DUT.
11.1.2-2	Broadcast <Report Physical Address> [1.1.0.0] from TE (logical address 3). Broadcast <Report Physical Address> [1.2.0.0] from TE (logical address 4). Send <lmage View On> from TE (logical address 3). About 200ms later, broadcast <Active Source> from TE (logical address 3). Broadcast <Routing Change> [1.1.0.0] [1.2.0.0] from logical address 15.	<Set Stream Path> [1.2.0.0] is sent from DUT. Alternatively, <Active Source> is sent, and the display switched to internal tuner.
11.1.2-3	Broadcast <Report Physical Address> [1.1.0.0] from TE (logical address 3). Broadcast <Report Physical Address> [1.2.1.0] from TE (logical address 4). Send <lmage View On> from TE (logical address 3). About 200ms later, broadcast <Active Source> from TE (logical address 3). Broadcast <Routing Change> [1.1.0.0] [1.2.0.0] from TE (logical address 1). Broadcast <Routing Information> [1.2.1.0] from TE (logical address 15).	<Set Stream Path> [1.2.1.0] is sent from DUT. Alternatively, <Active Source> is sent, and the display switched to internal tuner.

Item	Required Test Method	Pass criateria
11.1.2-4	Broadcast <Report Physical Address> [1.1.0.0] from TE (logical address 3). Broadcast <Report Physical Address> [1.2.1.9] from TE (logical address 4). Send <lmage View On> from TE (logical address 3). About 200ms later, broadcast <Active Source> from TE (logical address 3). Broadcast <Routing Change> [1.1.0.0] [1.2.0.0] from TE (logical address 15). Broadcast <Routing Information> [1.2.1.0] from TE (logical address 15). Broadcast <Routing Information> [1.2.1.9] from TE (logical address 15).	<Set Stream Path> [1.2.1.9] is sent from DUT. Alternatively, <Active Source> is sent, and the display switched to internal tuner.
11.1.2-5	Send <Active Source> from TE. Then broadcast <Request Active Source> from TE.	The DUT does not respond to <Request Active Source>.
11.1.2-6	Set DUT to <Active Source>. Broadcast <Request Active Source> from TE.	DUT returns <Active Source>.
11.1.2-7	Set DUT to <Active Source>. Send <Active Source> [1.0.0.0] from TE to the logical address of DUT. Broadcast <Request Active Source> from TE.	DUT returns <Active Source>.
Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.		
11.2.2-1	Broadcast <Active Source> from TE (logical address 0). With the DUT power ON, check that DUT does not operate as <Active Device>. Broadcast <Set Stream Path> from TE so that DUT operates as <Active Source>.	DUT returns <Active Source>.
11.2.2-2	Set DUT to <Active Source>. Broadcast <Request Active Source> from TE.	DUT returns <Active Source>.
11.2.2-3	Change the logical addresses of TE to $1,3,4,5,15$, and repeat the following steps. Set DUT to <Active Source>. Broadcast <Request Active Source> from TE.	DUT returns <Active Source>.
System Standby Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.		
Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.		
11.1.3-1	Execute the system standby feature of DUT.	DUT broadcasts the standby message and switches to standby.
11.1.3-2	Change the logical addresses of TE to $1,3,4,5,13,14$, 15 , and take the following steps. Set to the status in which DUT can transfer to standby. Broadcast standby from TE.	DUT switches to standby.

Item	Required Test Method	Pass criateria
11.1.3-3	Change the logical addresses of TE to $1,3,4,5,13,14$, 15 , and take the following steps. Set to the status in which DUT can transfer to standby. Broadcast standby from TE.	DUT switches to standby.
Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.		
11.2.3-1	Set to the status in which DUT can transfer to standby. Execute the system standby feature of DUT.	DUT broadcasts standby.
11.2.3-2	Change the logical addresses of TE to $1,3,4,5,15$, and take the following steps. Check that the status is established in which DUT can transfer to standby. Broadcast standby from TE.	DUT switches to standby.
11.2.3-3	Change the logical addresses of TE to $1,3,4,5,15$, and take the following steps. Check that the status is established in which DUT can transfer to standby. Send standby from TE to DUT.	DUT switches to standby.
One Touch Record Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.		
Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.		
11.1.4-1	Change the logical addresses of TE to 1, 2, 9, and take the following steps. Display the internal tuner on DUT. Execute the One Touch Record feature of DUT.	DUT sends <Record On> [Digital Service] [Digital Service Identification].
11.1.4-2	Change the logical addresses of TE to $1,2,9$, and take the following steps. Send <Image View On> from TE to DUT. Broadcast <Active Source> from TE. Execute the One Touch Record feature of DUT.	DUT sends <Record On> [Own Source].
11.1.4-3	Connect a source other than the VA-1809 to DUT (to its analog input connector, for instance), and display it. Send <Record TV Screen> from TE.	DUT does not send <Record On>.
11.1.4-4	Send Image View On from TE to DUT. Broadcast <Active Source> from TE. Execute the One Touch Record feature of DUT. Send <Record Status> [Recording own source] from TE to DUT. Stop recording using UI/Remote Control of DUT.	After selecting to stop recording, <Record Off> is sent.
11.1.4-5	Change the logical addresses of TE to $1,2,9$, and take the following steps. Display the internal tuner on DUT. Send <Record TV Screen> from TE to DUT.	DUT sends <Record On> [Digital Service] [Digital Service Identification].

Item	Required Test Method	Pass criateria
11.1.4-6	Change the logical addresses of TE to 1, 2, 9, and take the following steps. Send <Image View On> from TE to DUT. Broadcast <Active Source> from TE. Send <Record TV Screen> from TE to DUT.	DUT sends <Record On> [Own Source].
11.1.4-7	In the * area, change the logical addresses of TE to 3, $4,5,14,15$, and take the following steps. Send <Image View On> from TE (logical address 1) to DUT. Broadcast <Active Source> from TE (logical address 1). Send <Record TV Screen> from TE (* address).	The DUT ignores TV Screen.
11.1.4-8	In the * area, change the logical addresses of TE to 1 , 2,9 , and take the following steps. Send <Image View On> from logical address 4. Broadcast <Active Source> from logical address 4. Send <Record TV Screen> from TE (address of *).	DUT sends <Feature Abort> [Cannot Provide Source].
Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.		
11.2.4-1	Install the media in DUT, and set to the record enable ode. Execute the One Touch Record feature of DUT.	DUT sends <Record TV Screen>.
	After DUT has sent Record TV Screen, send Feature Abort [Cannot Provide Source] from TE.	<Feature Abort> is received, and recording does not start.
11.2.4-2	At DUT, select the ID set in Digital Service 1 of CDF. Install the media in DUT, and set to the record enable mode. Send <Record On> [Digital Service] from TE.	DUT returns <Record Status> [Recording Digital Service]. DUT also changes the tuner to Specified service, and starts recording.
11.2.4-3	Check that DUT displays the internal tuner. Install the media in DUT, and set to the record enable mode. Send <Record On> [Own Source] from TE.	DUT returns <Record Status> [Recording Own Source]. DUT also starts internal tuner recording.
11.2.4-4	Check that DUT displays an external source (such as a camcorder). Install the media in DUT, and set to the record enable mode. Send <Record On> [Own Source] from TE.	DUT returns <Record Status> [Recording Own Source]. DUT also starts recording.
11.2.4-5	Display the internal tuner on DUT, install the media, and set to the record enable mode. Send <Record On> [Own Source].	DUT returns <Record Status> [Recording Own Source]. DUT also starts recording.
	Send <Record Off> from TE.	Recording stops.

Item	Required Test Method	Pass criateria
11.2.4-6	Display the internal tuner on DUT, install the media, and set to the record enable mode. Send <Record On> [Own Source] from TE (logical address 0).	DUT returns <Record Status> [Recording Own Source]. DUT also starts recording.
	Send <Record Off> from TE (logical address 14).	The message is ignored and recording continued.
11.2.4-7	Change the logical addresses of TE to $1,3,4,5$, and take the following steps. Send <Record On> [Own Source] from TE.	DUT returns <Record Status> [Recording Own Source]. DUT also starts recording.
	Send Record Off from TE.	Recording stops.
11.2.4-8	Display the internal tuner on DUT, install the media, and set to the record enable mode. Send <Record On> [Own Source] from TE (logical address 15).	DUT ignores the message.

System Information
Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.

Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.

$11.1 .5-1$	Send the polling message to DUT.	ACK is returned.
$11.1 .5-2$	Change the logical addresses of TE to $1,3,4,5,13,14$, 15, and take the following steps. Send <Give Physical Address> from TE to DUT.	DUT broadcasts <Report Physical Address>.
$11.1 .5-3$	Broadcast <Report Physical Address> [1.0.0.0] from TE (logical address 15).	DUT ignores the message.
$11.1 .5-4$	Change the language setting of DUT.	<Set Menu Language> is broadcast.
$11.1 .5-5$	Change the logical addresses of TE to 1,3, 4,5,13, 14, 15, and take the following steps. Send <Give Menu Language> from TE.	DUT is broadcast <Set Menu Language>.

Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.

$11.2 .5-1$	Send the polling message to DUT.	ACK is returned.
$11.2 .5-2$	Change the logical addresses of TE to 0, 1, 3, 4,5, 15 (logical addresses other than those of DUT), and take the following steps. Send <Give Physical Address> from TE to DUT.	DUT broadcasts <Report Physical Address>.
$11.2 .5-3$	Broadcast <Set Menu Language> [First language enabled by Language Set of CDF] from TE. If the language setting is not going to be changed, broadcast <Set Menu Language> [Second language enabled by Language Set of CDF] from TE.	The language setting is changed.
$11.2 .5-4$	Broadcast <Set Menu Language> [Language not enabled by Language Set of CDF] from TE.	The language setting is not changed.

Item	Required Test Method	Pass criateria
$11.2 .5-5$	In the * area, change the logical addresses of TE to 1, $3,4,5,15$, and take the following steps. Broadcast Set Menu Language [First language enabled by Language Set of CDF] from TE (logical address 0). Broadcast <Set Menu Language> [Second language enabled by Language Set of CDF] from TE (logical address 0). Broadcast < Set Menu Language> [First language enabled by Language Set of CDF] from TE (address of *).	The language setting is not changed.

Deck Control

Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.

Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.

11.1.6-1	Change the logical addresses of TE to 1, 4, and take the following steps.	
	Send <Deck Control> or <Play message> from DUT.	DUT is able to send <Deck Control> or <-Play message>.
	Send <Deck Status> from TE to DUT.	If possible, check that <-Deck Status> has been updated correctly at DUT.
11.1.6-2	Send <Play> [Forward] from DUT. Return <Deck Status> [Play] from TE.	DUT is able to receive <Deck Status>. If possible, check that <Deck Status> has been updated correctly at DUT.
11.1.6-3	Send <Play> [Forward] from DUT. Return <Deck Status> [Stop] from TE.	DUT is able to receive <Deck Status> If possible, check that <Deck Status> has been updated correctly at DUT.

Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.

$11.2 .6-1$	Play the DUT media. Send <Deck Control> [Skip Forward/Wind Forward] to DUT.	DUT skips forward or wind forward.
$11.2 .6-2$	Play the DUT media. Send <Deck Control> [Skip Backward/Rewind] to DUT.	DUT skips backward or rewind.
$11.2 .6-3$	Play the DUT media. Send <Deck Control> [Stop] to DUT.	DUT stops the play.
$11.2 .6-4$	Change the logical addresses of TE to 0, 1, 3, 4,5 (logical addresses other than those of DUT), and conduct the following tests. Play the DUT medi. Send <Deck Control> [Stop] to DUT.	DUT stops the play.
$11.2 .6-5$	Play the DUT media. Send <Deck Control> [Stop] from TE (logical address 15) to DUT.	DUT ignores the message and continue play.
$11.2 .6-6$	Install the media in DUT, and set to the idle mode. Send <Play> [Play Forward] to DUT.	DUT starts play.

Item	Required Test Method	Pass criateria
11.2.6-7	Install the media in DUT, and set to the idle mode. Send <Play> [Play Reverse] to DUT.	DUT starts reverse play.
11.2.6-8	Play the DUT media. Send <Play> [Play still] to DUT.	DUT transfers from the play mode to play still mode.
11.2.6-9	Install the media in DUT, and set to the idle mode. Send <Play> [Play still] to DUT.	DUT transfers to the play still mode. Alternatively, DUT sends <Feature Abort>, and remains in the idle mode.
11.2.6-10	Install the media in DUT, and set to the idle mode. Send <Play> [Scan Forward Minimum] from TE (TV) to DUT. Change the parameters of the above command to the ones listed below, and conduct the tests one after the other. [Scan Forward Medium] [Scan Forward Maximum] [Scan Reverse Minimum] [Scan Reverse Medium] [Scan Reverse Maximum] [Slow Forward Minimum] [Slow Forward Medium] [Slow Forward Maximum] [Slow Reverse Minimum] [Slow Reverse Medium] [Slow Reverse Maximum]	DUT sends <Image View On> or <Text View On> to TE (TV), and starts play at the selected speed (or the closest speed if the selected speed is not supported) in the scan mode where applicable. Alternatively, DUT sends <Feature Abort>, and remains in the idle mode.
11.2.6-11	Play the DUT media. Send <Play> [Scan Forward Minimum] from TE (TV) to DUT. Change the parameters of the above command to the ones listed below, and conduct the tests one after the other. [Scan Forward Medium] [Scan Forward Maximum] [Scan Reverse Minimum] [Scan Reverse Medium] [Scan Reverse Maximum] [Slow Forward Minimum] [Slow Forward Medium] [Slow Forward Maximum] [Slow Reverse Minimum] [Slow Reverse Medium] [Slow Reverse Maximum]	The DUT switches to playing in the selected mode and speed (or a sensible close match if that speed is not supported).
11.2.6-12	Change the logical addresses of TE to 1, 3, 4, 5 (logical addresses other than those of DUT), and conduct the following tests. Install the media in DUT, and set to the idle mode.	Send <Play> [Play Forward] to DUT.
11.2.6-13	Install the media in DUT, and set to the idle mode. Send <Play> [Play Forward] from TE (logical address 15).	DUT ignores the message.

Item	Required Test Method	Pass criateria
11.2.6-14	Play the DUT media. Send <Give Deck Status> [Once] to DUT. Change the DUT mode as below, and conduct the tests one after the other. Playing Forwards Playing Reverse Paused Slow Forwards Slow Backwards Scan Forwards Scan Backwards Stopped media present No media present Winding forwards Winding backwards Recording	DUT sends the appropriate <Deck Status>. Listed below are the parameters corresponding to the modes. Playing Forwards - [Play] Playing Reverse - [Play Reverse] Paused - [Still] Slow Forwards - [Slow] Slow Backwards - [Slow Reverse] Scan Forwards - [Search Forward] Scan Backwards - [Search Reverse] Stopped media present - [Stop] No media present - [No Media] Winding forwards - [Wind] Winding backwards - [Rewind] Recording - [Record]
11.2.6-15	Set DUT to idle, and install the media. Send <Give Deck Status> [On] to DUT.	DUT sends <Deck Status> [Stop].
	Press the play key on	D
	Press the stop key on DUT.	DUT sends <Deck Status> [Stop].
	Send <Give Deck Status> [Off] to DUT. Press the play key on DUT.	DUT does not send <Deck Status>.
11.2.6-16	Change the logical addresses of TE to 1, 3, 4, 5 (logical addresses other than those of DUT), and take the following steps. Play the DUT media. Send <Give Deck Status> [Once] to DUT.	DUT sends <Deck Status> [Play].
11.2.6-17	Play the DUT media. Send <Give Deck Status> [Once] from TE (logical address 15).	DUT <ignores> the message.
Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.		
Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.		
11.1.7-1	Change the logical addresses of TE to 1,3 , and conduct the following tests. Execute the tuner control feature of DUT. If <Give Tuner Device Status> has been sent, return Digital service which was set in CDF. Send <Tuner Step Increment> from DUT.	DUT sends <Tuner Step Increment>.

Item	Required Test Method	Pass criateria
11.1.7-2	Change the logical addresses of TE to 1, 3, and conduct the following tests. Execute the tuner control feature of DUT. If <Give Tuner Device Status> has been sent, return Digital service which was set in CDF. Send <Tuner Step Decrement> from DUT.	DUT sends <Tuner Step Decrement>.
11.1.7-3	Send <Tuner Device Status> [Not Displaying Tuner] [Digital service set in CDF] to DUT.	DUT does not respond with <Feature Abort>.
Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.		
11.2.7-1	Change the logical addresses of TE to $0,1,3,4,5$ (logical addresses other than those of DUT), and conduct the following tests. Turn on the power of DUT, and select Digital service 1 set in CDF. Send <Select Digital Service> [Digital service 2 set in CDF] to DUT.	DUT changes to Digital service 2 set in CDF.
11.2.7-2	Turn on the power of DUT, and select Digital service 1 set in CDF. Send <Select Digital Service> [Digital service 2 set in CDF] from TE (logical address 15) to DUT.	DUT ignores the message.
11.2.7-3	Turn on the power of DUT, and select Digital service 1 set in CDF. Send <Select Digital Service> [Digital service 1 set in CDF] to DUT.	DUT ignores the message, and Digital service 1 set in CDF remains unchanged.
11.2.7-4	Change the logical addresses of TE to $0,1,3,4,5$, and conduct the following tests. Turn on the power of DUT. Send <Tuner Step Increment> to DUT.	DUT increments the Digital service number received.
11.2.7-5	Turn on the power of DUT. Send <Tuner Step Increment> from TE (logical address 15) to DUT.	DUT ignores the message.
11.2.7-6	Change the logical addresses of TE to 0, 1, 3, 4, 5 (logical addresses other than those of DUT), and conduct the following tests. Turn on the power of DUT. Send <Tuner Step Decrement> to DUT.	DUT decrements the Digital service number received.
11.2.7-7	Turn on the power of DUT. Send <Tuner Step Decrement> from TE (logical address 15) to DUT.	DUT ignores the message.
11.2.7-8	Change the logical addresses of TE to $0,1,3,4,5$, and conduct the following tests. Display the tuner on DUT. Send <Give Tuner Device Status> [Once] to DUT.	DUT returns <Tuner Device Status> using the service number of the currently displayed tuner.

Item	Required Test Method	Pass criateria
11.2.7-9	Display the tuner on DUT. Send <Give Tuner Device Status> [Once] from TE (logical address 15) to DUT.	DUT ignores the message.
11.2.7-10	Display the tuner on DUT.	
	Send <Give Tuner Device Status> [On] to DUT.	DUT returns <Tuner Device Status> using the service number of the currently displayed tuner.
	Change Digital service of DUT.	DUT returns <Tuner Device Status> using the new service number.
	Send <Give Tuner Device Status> [Off]. Change Digital service of DUT.	DUT does not send <Tuner Device Status>.

Vendor Specific Commands

Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.

Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.

11.1.8-1	Change the logical addresses of TE to $1,3,4,5,13,14$, 15, and conduct the following tests. Send <Give Device Vendor ID> to DUT.	DUT broadcasts <Device Vendor ID> using the appropriate ID.

Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.
11.2.8-1 \quad Change the logical addresses of TE to $0,1,3,4,5,15$

DUT broadcasts <Device Vendor ID> using the of TE (logical addresses other than those of DUT), and appropriate ID. conduct the following tests.
Send <Give Device Vendor ID> to DUT.

OSD Status Display

Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.
Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.

11.1.9-1	Change the logical addresses of TE to $1,3,4,5,13,14$, and conduct the following tests. Set DUT to a status in which OSD String can be displayed. Send <Set OSD String> [Display For Default Time] [Test String] to DUT.	DUT displays the message during the default time period, and then clears it.
11.1.9-2	Set DUT to a status in which OSD String can be displayed.	
	Send <Set OSD String> [Display Until Cleared] [Test String] to DUT.	The "Test String" message is displayed.
	After the "Test String" message has been displayed and a period of time exceeding the default time period has elapsed, send <Set OSD String> [Clear Previous Message] to DUT.	The OSD text is cleared.

Item	Required Test Method	Pass criateria
11.1.9-3	Set DUT to a status in which OSD String can be displayed.	
	Send <Set OSD String> [Display Until Cleared] [Test String] from TE (logical address 1) to DUT.	DUT displays the "Test String" message.
	Send <Set OSD String> [Display For Default Time] [Second String] from TE (logical address 2) to DUT.	DUT clears the previous message and display the "Second String" message.
Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.		
11.2.9-1	Send <Set OSD String> [OSD String] to logical address 0 from DUT.	DUT provides the appropriate [OSD String] parameter, and sends <Set OSD String> [OSD String].

Device OSD Name Transfer

Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.

Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.

11.1.10-1	Change the logical addresses of TE to $1,3,4,5,13,14$, and conduct the following tests.	
	Broadcast <Report Physical Address> [1.0.0.0].	DUT sends <Give OSD Name> to the appropriate address.
	After DUT has sent Give OSD Name, send <Set OSD Name> to DUT.	DUT recognizes TE as Test Device on the DUT menu.
11.1.10-2	Broadcast <Report Physical Address> [1.0.0.0] from TE (logical address 15).	DUT does not send <Give OSD Name>.

Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.

$11.2 .10-1$	Change the logical addresses of TE to 0,1,3,4,5 of TE (logical addresses other than those of DUT), and take the following steps. Send <Give OSD Name> to DUT.	DUT sends <Set OSD Name> to the appropriate address.
$11.2 .10-2$	Send <Give OSD Name> from TE (logical address 15) to DUT.	DUT ignores the message.

Device Menu Control
Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.

Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.
11.1.11-1

Change the logical addresses of TE to $1,3,4,5,13,14$, and conduct the following tests.
Set DUT to the status in which the remote control keys can be transferred.
Send <Image View On> to DUT.
Broadcast <Active Source>.
Send <Menu Status> [Activated] to DUT.
Press the remote control UP key on DUT.

When the key is pressed, DUT sends <USER Control>.

Item	Required Test Method	Pass criateria
$11.1 .11-2$	Set DUT to the status in which the remote control keys can be transferred. Send <Image View On> from TE (logical address 15) to DUT. Broadcast <Active Source>. Send <Menu Status> [Activated] to DUT. Press the remote control UP key on DUT.	DUTdoes not send USER Control.
11.1.11-3	Set DUT to the status in which the remote control keys can be transferred. Send <Image View On> to DUT. Broadcast <Active Source>. Send <Menu Status> [Activated] to DUT. Send <Menu Status> [Deactivated] from the current source device to DUT. Press the remote control UP key on DUT.	DUT does not send USER Control.
11.1.11-4	Set DUT to the status in which the remote control keys can be transferred. Send <Image View On> to DUT. Broadcast <Active Source>. Execute the Device Menu Control feature of DUT.	DUT sends Menu Request [Activate] to the current active source device.
11.1.11-5	Set DUT to the status in which the remote control keys can be transferred. Send <lmage View On> to DUT. Broadcast <Active Source>. Send <Menu Status> [Activated] to DUT. Stop the Device Menu Control feature of DUT.	DUT sends Menu Request [Deactivate] to the current source device.
$11.1 .11-7$	Set DUT to the status in which the remote control keys can be transferred. Send <lmage View On> from TE (logical address 1) to DUT. Broadcast <Active Source> from TE (logical address 1). Send <Menu Status> [Activated] from TE (logical address 2). Press the remote control UP key on DUT.	USER Control is not sent.
11.1.11-6	Display internal tuner or an external source not supported by CEC on DUT. Also, set DUT to the status in which the remote control keys can be transferred. Send <Menu Status> [Activated] to DUT. Press the remote control UP key on DUT.	USER Control is not sent.

Item	Required Test Method	Pass criateria
Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.		
11.2.11-1	Check that the DUT menu is not set to Active. Check that DUT is the current Active Source. Call Device Menu of DUT.	When Menu is called, DUT sends Menu Status [Activated].
11.2.11-2	Call the DUT menu. Set DUT as the current Active Source. Call Device Menu of DUT.	When Menu is called, DUT sends Menu Status [Deactivated].
11.2.11-3	Set DUT as the current Active Source. Send <Menu Request> [Activate] to DUT.	DUT sends <Menu Status> [Activated] or <Menu Status> [Deactivated].
11.2.11-4	Set DUT as the current Active Source. Send <Menu Request> [Deactivate] to DUT.	DUT must send Menu Status [Activated] or Menu Status [Deactivated].
11.2.11-5	Change the logical addresses of TE to $0,1,3,4,5$ of TE (logical addresses other than those of DUT), and conduct the following tests. Set DUT as the current Active Source. Send <Menu Request> [Query] from TE to DUT.	DUT sends <Menu Status> [Activated] or <Menu Status> [Deactivated].
11.2.11-6	Set DUT as the current Active Source. Send <Menu Request> [Query] from TE (logical address 15).	DUT ignores the message.
11.2.11-7	Set DUT as the current Active Source. Send <Menu Request> [Activate] to DUT. Send <User Control Pressed> using the following user control codes: Select, Up, Down, Left, Right After sending each of the user control codes, send <User Control Released> to DUT.	The DUT menu is called. The DUT menu responds to the message sent.
Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.		
Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.		
11.1.12-1	Set the logical address of TE to 1. Set the remote control of DUT to point at Recording Device. Press the Remote Control Key with which DUT sends to the Recording Device.	DUT sends <User Control Pressed> and then <User Control Released>.
11.1.12-2	Set the logical address of TE to 4. Set the remote control of DUT to point at Recording Device. Press the Remote Control Key with which DUT sends to the DVD.	DUT sends <User Control Pressed> and then <User Control Released>.
11.1.12-3	Set the logical address of TE to 3. Set the remote control of DUT to point at STB. Press the Remote Control Key with which DUT sends to STB.	DUT sends <User Control Pressed> and then <User Control Released>.

Item	Required Test Method	Pass criateria
11.1.12-4	Set the logical address of TE to 5 . Set the remote control of DUT to point at Audio System. Press the Remote Control Key with which DUT sends to Audio System.	DUT sends <User Control Pressed> and then <User Control Released>.
11.1.12-5	Select Device Type to which DUT can send Remote Control Key.	User Control Pressed and then User Control Released are sent. In addition, they are not sent to a multiple number of Recording Devices, DVDs or STBs.
	<When Recording Devices are supported> Set TE to logical address 1. Broadcast <Report Physical Address> [2.0.0.0] from TE (logical address 2). Set the remote control of DUT to point at Recording Device. Press some of the Remote Control Keys with which DUT sends to Recording Device.	
	<When DVDs are supported> Set TE to logical address 4. Broadcast <Report Physical Address> [2.0.0.0] from TE (logical address 8). Set the remote control of DUT to point at DVD. Press some of the Remote Control Keys with which DUT sends to DVD.	
	<When STBs are supported> Set TE to logical address 3. Broadcast <Report Physical Address> [2.0.0.0] from TE (logical address 6). Set the remote control of DUT to point at STB. Press some of the Remote Control Keys with which DUT sends to STB.	
11.1.12-6	Send <Image View On> to DUT. Broadcast <Active Source>. Press the Remote Control Key with which DUT transfers to Recording Device. Before releasing the key, transfer DUT to the standby mode.	DUT sends <User Control Pressed>. In addition, before transferring to the standby status, it sends <User Control Released>.
Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.		
11.2.12-1	Send <User Control Pressed> of the key set in CDF to DUT. Send <User Control Released> to DUT. Change the key, and repeat the above steps.	DUT operates in such a way that the Remote Control Key is pressed inside (by DUT itself).
11.2.12-2	Among the keys set in CDF, use the key set first to send <User Control Pressed> five times in succession (with no <User Control Released> in between). Finally, send <User Control Released> to DUT.	After receiving <User Control Released>, DUT stops the Remote Control Key operation.

Item	Required Test Method	Pass criateria
Give Device Power Status Items 11.1 pertain to the testing of TV sets, and items 11.2 pertain to the testing of devices other than TV sets. Only the tests for the Device Type which was set by Device Type under "CDF SETTING" (see page 104) are performed.		
Items 11.1 pertain to the testing of TV sets. Set TE to Repeater, and connect the HDMI input of DUT to the output of TE.		
11.1.13-1	Turn on the power of DUT. Send <Give Device Power Status> to DUT.	DUT sends Report Power Status [On].
11.1.13-2	Set DUT to the standby mode. Send <Give Device Power Status> to DUT.	DUT sends Report Power Status [Standby].
Items 11.2 pertain to the testing of devices other than TV sets. Connect the HDMI output of DUT to the input of TE.		
11.2.13-1	Turn on the power of DUT. Send <Give Device Power Status>.	DUT sends Report Power Status [On].
11.2.13-2	Set DUT to the standby mode. Send <Give Device Power Status> to DUT.	DUT sends Report Power Status [Standby].
CEC Switch		
11.3.1-1	Connect the TE output to any slave position of DUT. Select slave position 1 as the DUT port. Broadcast <Active Source> [1.0.0.0].	The DUT does not switch.
11.3.1-2	Connect the TE output to any slave position of DUT. Select slave position 1 as the DUT port. Broadcast <Active Source> [2.0.0.0].	The DUT switches to position 2.
11.3.1-3	Connect the TE output to any slave position of DUT. Select slave position 1 as the DUT port. Broadcast <Set Stream Path> [1.1.0.0].	The DUT does not switch.
11.3.1-4	Connect the TE output to any slave position of DUT. Select slave position 1 as the DUT port. Broadcast <Set Stream Path> [2.1.0.0].	The DUT does not switch.
11.3.1-5	Connect the TE input to DUT. (Set the physical address of DUT to 1.0.0.0.) Select slave position 1 as the DUT port. Broadcast <Routing Change> [0.0.0.0] [1.1.0.0] (from TE).	The DUT broadcasts a <Routing Information> [1.1.0.0].
11.3.1-6	Connect the TE output to any slave position of DUT. Broadcast <Routing Change> [1.0.0.0].	The DUT broadcasts a <Routing Information> [1.1.0.0].
11.3.2-1	Connect the TE input to DUT. (Set the physical address of DUT to 1.0.0.0.) Select slave position 1 as the DUT port. Change the DUT port to slave position 2.	Routing Information [1.1.0.0] [1.2.0.0] is broadcast.

Item	Required Test Method	Pass criateria
Invalid Massage When DUT is a regular TV set, set TE to Repeater, connect the HDMI input of DUT to the output of TE; when DUT is any other device, connect the HDMI output of DUT to the input of TE. Then conduct the tests.		
$12-1$	For the message which has been set in CDF to be broadcast, send it as a directly addressed message to the DUT.	The DUT ignores the message.
$12-2$	For the message which has been set in CDF and to be directly addressed, send it as a broadcast message.	The DUT ignores the message.

4.18 Other functions

4.18.1 Hot plug function

The hot plug status can be changed by pressing the HOTPLUG button.
The hot plug function can be used when the measurement results are displayed using the ANALYZE button.
For the HOTPLUG button settings, refer to "6.3.5 HOT PLUG MODE" on page 157.

4.18.2 Log function

In the VA-1809, this function makes it possible to apply a trigger in the HDMI input status and import the measurement results on a CF card as a log. There are four kinds of logs: logs for the DDC line monitor, logs for the CEC line monitor, logs for the HDCP Repeater Sequence, and analysis data logs. They can be captured simultaneously. The data in each log is saved as a text file.

LOG Moves to the Log screen

* For details on the log import trigger settings, refer to "6.3.2 ANALYSIS \& LOG TRIGGER" on page 154.

START F1

This function key starts loading a log.

STOP F2
This function key stops loading a log.

NAME SELECT

F3
This function key changes the name of a log file.

* A new file name must be set before acquiring a log.

DETELE LOG FILE F4

This function key deletes a log file. Select the log file you want to delete with the rotary key, and then delete it.

Presented below is an outline of each type of log file.

Log file	Extension	Description
ANALYSIS DATA	.log	All data to be captured by the ANALYSIS item except for information relating to the DDC monitor and CEC can be captured in these logs. The log capture times are also noted in the logs.
HDCP Repeater Sequence	.hdc	The information to be captured by the HDCP Repeater Sequence Check area of the ANALYSIS item can be captured as these logs.
DDC line monitor	.dcl	The information to be captured by the DDC Line Monitor area of the ANALYSIS item can be captured as these logs. The log capture times are also noted in the logs.
CEC line monitor	.cel	The information to be captured by the CEC Line Monitor area of the ANALYSIS item can be captured in the HEX display status in these logs.

* Log files can be referenced from the text editor of the PC, etc.

Simple setup

5.1 Setting the VA-1809's HDMI equipment performance using the internal programs with the default settings

The VA-1809 can be made to switch between operating as a receiver (monitor) and as a repeater by using the internal programs with the default settings. It is also possible to set the performance (supported TV formats and sound) of the VA-1809 as a receiver using a program.
Select the number of the program to be set from the ones listed below, and load the program by following the steps below.

5.1.1 Loading the programs

(1) Press the ANALYZE button. The key menu appears as shown below.

(2) Press DIRECT PROGRAM CALL F4 on the key menu. The following screen appears.

(3) From the list, select the program data to be loaded.

* The cursor is moved using the Rotary key, and the selection is entered by pressing the Rotary key or ENTER.
* Select a program from the list of programs in "5.1.2 Internal programs with default settings" below.
(4) The program is now loaded.
* PRG001 is loaded as the default setting.

5.1.2 Internal programs with default settings

The default settings in the internal programs can be used as indicated below.
\square Use as a receiver (monitor)
\rightarrow RAM PRG001
Use as a repeater
\rightarrow RAM PRG002
Use as a receiver that supports SD
\rightarrow RAM PRG003

- Use as a receiver that supports HD
\rightarrow RAM PRG004
Setting the audio reception performance to PCM, 2 channels
\rightarrow RAM PRG005
Setting the audio reception performance of to PCM, 8 channels
\rightarrow RAM PRG006

Use as a receiver (monitor) capable of receiving multiple formats
\rightarrow RAM PRG007
■ Use as a repeater capable of receiving multiple formats
\rightarrow RAM PRG008
■ Use as a DVI monitor
\rightarrow RAM PRG009

Use as an HDMI Ver. 1.0 monitor

\rightarrow RAM PRG010

* When a program with the default settings is changed and the resulting program with these changes is saved under the same program number, the old program will be overwritten.
* The VA-1809 has a front 2-channel audio output capability. For this reason, the audio signals of two channels will be output to the speaker even if 8 -channel audio signals are supplied.
* For details on EDIDs, refer to "8.1 Internal data" on page 197

A list of the internal programs is provided below.

Video Format

Internal program	001	002	003	004	005	006	007	008	009	010
720×480p @ 59.94/60Hz	\bigcirc	-	\bigcirc							
1920×1080i @ 59.94/60Hz	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
1280×720p @ 59.94/60Hz	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
640×480p @ 59.94/60Hz	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
1920×1080p @ 59.94/60Hz	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
1440×480i @ 59.94/60Hz	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
720×576p @ 50Hz	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
1920×1080i @ 50Hz	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
1280×720p @ 50Hz	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
1920×1080p @ 50Hz	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
1440×576i @ 50Hz	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
720×480p-w @ 59.94/60Hz	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
1440×480i-w @ 59.94/60Hz	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
720×576p-w @ 50Hz	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
1440×576i-w @ 50Hz	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-

Audio Format

Internal program	001	002	003	004	005	006	007	008	009	010
Linear PCM 8ch	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc
Linear PCM 2ch	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc
AC-3	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
MPEG1 (Layers 1 \& 2)	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
MP3 (MPEG1 Layer 3)	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
MPEG2 (multichannel)	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
AAC	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
DTS	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-
ATRAC	-	-	-	-	-	-	\bigcirc	\bigcirc	-	-

* For details on the audio sample rate, sample size and channels, refer to the EIA/CEA-861-B standard.

5.2 Connecting the signal source, and displaying the HDMI input images on the LCD screen

After executing the steps in "5.1 Setting the VA-1809's HDMI equipment performance using the internal programs with the default settings" on page 133, refer to "2.1 Example of connections when using the VA-1809 as a receiver (monitor)" on page 11, and connect the DVD player or other signal source to the HDMI input connector on the VA-1809. The images output from the DVD player appear on the unit's LCD screen while the sound output is delivered through its speaker.

6.1 PROGRAM (HDMI equipment performance settings)

The performance information of the HDMI receiver is stored in the EDID and HDCP registers and relayed when this information is read by the HDMI transmitter. By rewriting this performance information in the VA-1809, various kinds of monitors can be simulated.
The data can be registered as programs and stored on a CF card.
This section describes the procedures from creating programs to executing the program data.

6.1.1 Creating programs and groups

The program data creation screen is displayed when the PROGRAM button is pressed while the on-screen display is blank.
The menu tree is as shown below.

Copying programs

The procedure for creating a new program using an existing program or internal program is set forth below.

While the on-screen display is blank: Select PROGRAM PROGRAM MENU \rightarrow F1 COPY.

* First, perform these steps. All subsequent operation displays have been omitted.

(1) Selecting the editing source program

\rightarrow Use the Rotary key to select the editing source program.

(2) Saving the copied data

1) Saving the data in an existing program

$$
\begin{aligned}
& \rightarrow \text { Use the Rotary key to select the program to be overwritten } \\
& \rightarrow \text { Select F1 OK or F2 CANCEL. }
\end{aligned}
$$

2) Saving data in a program with a new number
\rightarrow F2 New Card Number
\rightarrow Use the Rotary key to select a 3-digit program number
\rightarrow F1 OK \rightarrow F1 OK or F2 CANCEL

Editing programs (SINK, EDID, filenames)

While the on-screen display is blank: Select PROGRAM PROGRAM MENU \rightarrow F3 PROGRAM EDIT \rightarrow Use the Rotary key to select the editing source program.

* First, perform these steps. All subsequent operation displays have been omitted.

(1) EDID editing

With the EDID setting, the EDID register values for the 0xA0 address of the device connected to the DDC line of the VA-1809 receiver can be changed.
\rightarrow F1 EDID EDIT \rightarrow Use the Rotary key to select the address to be edited
\rightarrow Use the Rotary key to change the data. \rightarrow SAVE OK

(2) Editing SINK of one of the programs

With the SINK setting, the Bcaps register values for the 0×40 offset address and 0×74 address of the device connected to the DDC line of the VA-1809 receiver can be changed.
\rightarrow F2 SINK EDIT \rightarrow Use the Rotary key to select the item to be set.
\rightarrow Press the Rotary key or ENTER. \rightarrow Change the check marks.

Details on the items are provided below.

Item	Details
Repeater	The VA-1809 is made to serve as a repeater.
Receiver	The VA-1809 is made to serve as a receiver (monitor).
DVI	The VA-1809 is made to serve as a DVI monitor (repeater).
HDMI	The VA-1809 is made to serve as an HDMI monitor (repeater).
HDCP ON	The VA-1809 is made to serve as a monitor (repeater) which supports HDCP.
HDCP OFF	The VA-1809 is made to serve as a monitor (repeater) which does not support HDCP.
100 kHz	The DDC line of the VA-1809 is set to 100 kHz.
400 kHz	The DDC line of the VA-1809 is set to 400 kHz.

* No signals are output from the HDMI output and COAX output connectors when the VA-1809 is used as a receiver (monitor).
* No sound can be input when the VA-1809 is used as a DVI monitor (repeater).
* No signals can be output from the VGA output connector if HDMI video signals have been input with HDCP when HDCP is not supported.
* To save this program in the CF card, press the SAVE button.
* To load saved data, the execution mode must be changed to PROGRAM MODE. Refer to "6.3.3 ANALYSIS MODE" on page 156.
* To load saved data, refer to "6.1.2 Executing programs (LOAD)" on page 147.
(3) Editing the filename of one of the programs
\rightarrow F3 NAME EDIT \rightarrow Use the Rotary key to edit the filename. \rightarrow SAVE OK

Creating groups

Up to ten of all the various programs can be selected and executed by the VA-1809. Follow the procedure set forth below.

While the on-screen display is blank: Select PROGRAM PROGRAM MENU
\rightarrow F2 GROUP EDIT.

* First, perform these steps. All subsequent operation displays have been omitted.
(1) Select the order in which the programs in the group are to be executed.
\rightarrow Use the Rotary key to select the numerical order.

(2) Select the programs to be executed.

\rightarrow Use the Rotary key to select the programs.

* To save group data, the SAVE button must be pressed to transfer operation to the SAVE MENU after the group data has been created. The PROGRAM GROUP MODE must be established. Refer to "6.5.2 PROGRAM GROUP" on page 171.
* To execute the group data, the PROGRAM GROUP MODE must be established. Refer to "6.3.3 ANALYSIS MODE" on page 156.
* To execute group data, refer to "6.1.2 Executing programs (LOAD)" on page 147.

6.1.2 Executing programs (LOAD)

This section describes how programs or program groups are executed.

* With the equipment settings, whether to select the programs directly or select programs from program groups can be switched using the execution mode. For details on the execution mode settings, refer to "6.3.3 ANALYSIS MODE" on page 156.
There are two ways to execute programs while the on-screen display is blank: either establish the ANALYSIS mode using the ANALYZE button and then execute the programs or establish the PROGRAM MENU using the PROGRAM button and execute the programs.

■ Executing programs from ANALYZE EXE

While the on-screen display is blank: Select ANALYZE ANALYSIS

* First, perform these steps. All subsequent operation displays have been omitted.
(1) Executing programs using INC or DEC
\rightarrow F2 PROG INC or F3 PROG DEC
INC executes the program whose number comes after the number of the current program conversely, DEC executes the program whose number comes before the number of the current program.

(2) Executing programs using DIRECT PROG CALL

\rightarrow F4 DIRECT PROG CALL
\rightarrow Use the Rotary key to select the program to be executed.
The program to be executed is selected in the program group, and executed.

Executing programs from PROGRAM EDIT

Programs can be executed using DIRECT PROG CALL from PROGRAM EDIT.
While the on-screen display is blank: Select PROGRAM PROGRAM MENU
\rightarrow F4 DIRECT PROG CALL \rightarrow Use the Rotary key to select the program to be executed.
The program to be executed is selected in the program group, and executed.

6.2 SETUP (DISPLAY SETUP)

The LCD settings are established with DISPLAY SETUP.
The menu is configured as shown below.

While the on-screen display is blank: Select
 \qquad SETUP MENU

\rightarrow F1 DISPLAY SETUP.

* First, perform these steps. All subsequent operation displays have been omitted.

BRIGHTNESS (with OSD)
The background brightness for on-screen displays is set here.
\rightarrow Use the Rotary key to select BRIGHTNESS (with OSD).
\rightarrow Press the Rotary key or ENTER. (The meter bar turns yellow.)
\rightarrow Use the Rotary key to change the value. \rightarrow Press the Rotary key or ENTER.
Bring the cursor to BRIGHTNESS (with OSD), and adjust the value. The brightness can be changed to any value in the range of -50 to +50 .

■ CONTRAST (with OSD)

The background contrast for on-screen displays is set here.
\rightarrow Use the Rotary key to select CONTRAST (with OSD).
\rightarrow Press the Rotary key or ENTER. (The meter bar turns yellow.)
\rightarrow Use the Rotary key to change the value. \rightarrow Press the Rotary key or ENTER.
Bring the cursor to CONTRAST (with OSD), and adjust the value. The contrast can be changed to any value in the range of -50 to +50 .

BRIGHTNESS

The LCD brightness under normal display condition (on-screen display turned OFF) is set here.
\rightarrow Use the Rotary key to select BRIGHTNESS.
\rightarrow Press the Rotary key or ENTER. (The meter bar turns yellow.)
\rightarrow Use the Rotary key to change the value. \rightarrow Press the Rotary key or ENTER.
Bring the cursor to BRIGHTNESS, and adjust the value. The brightness can be changed to any value in the range of -50 to +50 .

CONTRAST

The LCD contrast under normal display conditions (on-screen display turned OFF) is set here.
\rightarrow Use the Rotary key to select CONTRAST.
\rightarrow Press the Rotary key or ENTER. (The meter bar turns yellow.)
\rightarrow Use the Rotary key to change the value. \rightarrow Press the Rotary key or ENTER.
Bring the cursor to CONTRAST, and adjust the value. The contrast can be changed to any value in the range of -50 to +50 .

6.3 SETUP (CONFIG SETUP)

The equipment settings of the VA-1809 are performed using CONFIG SETUP. The menu is configured as shown below.

While the on-screen display is blank: Select SETUP SETUP MENU
\rightarrow F2 CONFIG SETUP.

* First, perform these steps. All subsequent operation displays have been omitted.

6.3.1 Description of Function Keys Common to CONFIG SETUP

The common function keys while the CONFIG SETUP menu is being displayed (PAGES 1 to 5) are as follows. The items of KSV list are added to only PAGE 4. For more information, see page 161, "Description of Function Keys Dedicated to VIRTUAL REPEATER MODE."

KEY	Item	Details
F1	PAGE 1-5	Switches pages.
F2	CONFIG LOAD	Loads configuration data.
F3	CONFIG DELETE	Deletes configuration data.

PAGE 1-5 F1
This function key switches pages. (There are a total of five pages.)

CONFIG LOAD F2

This function key loads the previously saved configuration data.
\rightarrow F2 CONFIG LOAD \rightarrow Rotary Key Select configuration data

For the location of the configuration data to be loaded, see page 4, "1.4.4 Storage locations of registered data."
For more information about the saving of configuration data, see page 173, "6.5.4 CONFIG DATA."

CONFIG DELETE

This function key deletes the previously saved configuration data.
\rightarrow F3 CONFIG DELETE
\rightarrow Rotary Key Select configuration data to be deleted, and execute deletion.

6.3.2 ANALYSIS \& LOG TRIGGER

The trigger settings for executing logs are established on this screen. All the trigger items are checked as the default.
To select only one or some of the items to trigger the log execution, proceed as follows.
\rightarrow Press the Rotary key or ENTER. The ALL check is removed.
\rightarrow Use the Rotary key to select the trigger items.
\rightarrow Press the Rotary key or ENTER. Add or remove the checks.
For details on log execution, refer to "4.18.2 Log function" on page 130. See below for details on the triggers. When a multiple number of triggers have been selected, they will all be OR-ed.

Item	Details
Periodic Time	The status is captured every so often (at specified intervals).
ALL	All the changes listed below serve as the trigger.
Video Timing	A change in Video Timing of the input HDMI serves as the trigger.
AVI InfoFrame	A change in AVI InfoFrame of the input HDMI serves as the trigger.
SPD InfoFrame	A change in SPD InfoFrame of the input HDMI serves as the trigger.
Audio InfoFrame	A change in Audio InfoFrame of the input HDMI serves as the trigger.
MPEG InfoFrame	A change in MPEG InfoFrame of the input HDMI serves as the trigger.
ACP Packet	A change in ACP Packet of the input HDMI serves as the trigger.
ISRC Packet	A change in ISRC Packet of the input HDMI serves as the trigger.
Channel Status Bit	A change in Channel Status Bit in the input HDMI Audio stream serves as the trigger.
AUDIO Timing	A change in the ACR constant (N or CTS) serves as the trigger.
HDCP Authentication	HDCP Authentication execution serves as the trigger.
HDCP Repeater Sequence	The HDCP Repeater Sequence logs are captured.
DDC Monitor	Data in the DDC line serves as the trigger.
AV MUTE	The time of status change of AV Mute serves as the trigger
CEC Monitor	The CEC Line Monitor logs are captured.

6.3.3 ANALYSIS MODE

Take the following steps to set the program execution mode.
\rightarrow Use the Rotary key to select MODE.
\rightarrow Press the Rotary key or ENTER. Add or remove the checks.
Mode details are provided below.

Item	Details
PROGRAM MODE	All the programs are executed.
PROGRAM GROUP MODE	Only the programs selected by PROGRAM GROUP EDIT are executed. Refer to "Creating groups" on page 145.

6.3.4 SPEAKER VOLUME

Take the following steps to adjust the volume level of the internal speaker. The volume of the sound delivered from the HDMI output connector and COAX OUT connector cannot be adjusted.
\rightarrow F1 PAGE2 \rightarrow Use the Rotary key to select SPEAKER VOLUME.
\rightarrow Press the Rotary key or ENTER. (The meter bar turns yellow.)
\rightarrow Use the Rotary key to adjust the volume level.

Even without displaying this screen, the volume level can be adjusted by simultaneously pressing and rotating the rotary key. When the rotary key is held down, the sound is muted.

* ither 2 channels (1 stream) of a maximum of 8 channels (4 streams) with frequencies from 32 to 96 kHz for linear PCM only or both channels of 2 channels with frequencies from 176.4 to 192 kHz can be output as the sound.

6.3.5 HOT PLUG MODE

The hot plug setting is established on this screen.
\rightarrow F1 PAGE2 \rightarrow Use the Rotary key to select HOT PLUG MODE.
\rightarrow Press the Rotary key or ENTER. Add or remove the checks.
(In AUTO MODE, use Rotary key to select the time.)
Mode details are provided below.

Item	Details
AUTO MODE	High changes to low and low changes to high when the HOTPLUG button is pressed once. Any time from 10 ms to 200 ms can be selected in 10 ms increments for the low period. Use the Rotary key to select it. * This length also applies to changes in the hot plug signals when other processes (such as program switching) are undertaken.
MANUAL MODE	The level is reversed when the HOTPLUG button is pressed once.
CONTINUOUS MODE	While executing CONTINUOUS MODE, hot plug level changes like $\mathrm{H} \rightarrow \mathrm{L} \rightarrow \mathrm{H} \rightarrow \mathrm{L} \ldots$. While executing CONTINUOUS MODE, by pressing HOTPLUG button, it switches like execute \rightarrow stop \rightarrow execute. Any time from 1000 ms to 10000 ms can be selected in 1000 ms increments for the high period. Use the Rotary key to select it. * High period may shift about 200 ms depending on the process. * The value that is set in AUTO MODE applies to the executing Low period. * When it stops, hotplug level is High.

6.3.6 EDID AUTO CHECKSUM

Take the following steps to set the EDID automatic checksum calculation function.
\rightarrow F1 PAGE2 \rightarrow Use the Rotary key to select EDID AUTO CHECKSUM.
\rightarrow Press the Rotary key or ENTER. Add or remove the checks.
If ON has been checked, the checksum is calculated and set automatically when EDIT is edited using EDID EDIT on PROGRAM MENU.
For details on editing EDID using EDID EDIT on PROGRAM MENU, refer to "Editing programs (SINK, EDID, filenames)" on page 141.

* Although calculation is also performed when being called, the calculated EDID will not be saved unless editing is done by EDID EDIT of the PROGRAM menu.

6.3.7 EDID DATA FILE TYPE

Take the following steps to set the format in which the EDID data files are to be loaded or saved.
\rightarrow F1 PAGE2 \rightarrow Use the Rotary key to select EDID DATA FILE TYPE.
\rightarrow Press the Rotary key or ENTER. Add or remove the checks.
Mode details are provided below.

Item	Details
. ddc	Priority is given to loading files with the .ddc extension. When saving programs on a CF card, they are saved as .ddc files.
. edi	Priority is given to loading files with the .edi extension. When saving programs on a CF card, they are saved as .edi files.

* The contents of data saved are independent of the file format.
* .ddc files are saved in the binary format and .edi files in the text format.

6.3.8 PHYSICAL ADDRESS FIX

If there is a physical address in the EDID of the VA-1809 currently being selected, set whether to fix the physical address.
\rightarrow F1 PAGE2 \rightarrow Rotary key Select PHYSICAL ADDRESS FIX.
\rightarrow Press Rotary key or ENTER. Check/uncheck
If ON is checked, the physical address of the EDID does not change even if the connections around the VA-1809 change.
If there is no physical address in the EDIT of the VA-1809 currently being selected, the physical address will be 0.0 .0 .0 . Also, if there is no physical address in the connected device, the physical address will be 1.0.0.0.

6.3.9 EDID TIMING CHECK

When the VA-1809 is a repeater, check the EDID of the unit connected to the output side, and set whether to switch output.
\rightarrow F1 PAGE2 \rightarrow Rotary key Select PHYSICAL ADDRESS FIX.
\rightarrow Press Rotary key or ENTER. Check/uncheck

Check	Details
ON	Outputs input video signals only when the EDID of the unit connected to the output side of the VA-1809 supports the input video timing (OFF if not supported).
OFF	Outputs all input video signals regardless of the EDID of the unit connected to the output side of the VA-1809.

6.3.10 SPEAKER PLACEMENT SET

The sound of which channel will be output from the speaker of the VA-1809 can be selected.
\rightarrow Press F1 twice. PAGE $3 \rightarrow$ Rotary key Select an audio channel.

* However, if there are three or more audio channels, switching can be done in the set of the audio channel laid out in the audio sample packet. For more information about the audio sample packet, refer to "5.3.4 Audio Sample Packet" and "7.6 Audio Data Packetization" in the High-Definition Multimedia Interface Specification Ver. 1.1.
* The picture and channel of the speaker being displayed are determined by InfoFrame.
* If Speaker Placement has changed and the channel previsouly set before change cannot be set after change, change setting to FL, FR.

6.3.11 VIRTUAL REPEATER MODE

When the VA-1809 is a repeater, this mode enables emulation as if an HDMI device is connected to the output side of the VA-1809 for a unit that outputs to the VA-1809.

* hysical address is not changed. If it needs to be changed, set ON for PHYSICAL ADDRESS FIX, and change setting manually. CEC operation reacts according to the connecting dvices.

Description of the Function Keys Dedicated to VIRTUAL REPEATER MODE

PAGE 4 contains the function keys dedicated to VIRTUAL REPEATER MODE.
\rightarrow Press F 1 three times. PAGE 4
\rightarrow Press
Rotary key or ENTER. Toggle between ON/OFF.

VIRTUAL REPEATER MODE

Check	Details
ON	Emulates the VA-1809 output connection using the DEPTH, COUNT and EXECUTION TIME that have been set. *
OFF	Performs the operation of a normal repeater.

* When HDCP is ON, the actual output is OFF; when HDCP is OFF, the VA-1809 becomes a normal repeater. Also, when the VA-1809 is a receiver, it performs a normal operation. When ON, it is necessary to set what kind of connection will be emulated.
\rightarrow Rotary key Select, edit and execute an item.

Item	Details
DEPTH	Sets the number of levels at the output destination of the VA-1809. * In the case of page 160, Emulation Behavior, set to "4."
DEVICE COUNT	Sets the total number of devices connected to the output destination of the VA-1809. * In the case of page 160, Emulation Behavior, set to "6."
EXECUTION TIME	This is the time from when the input side of the VA-1809 recognizes the beginning of HDCP until KSV FIFO READY is returned.

Also, if the VA-1809 is a repeater, the function for notifying the KSV of the unit connected to the output of the VA-1809 to the unit that outputs to the VA-1809 (2nd Part) is available. The KSV to be notified can be set at this time.
\rightarrow F4 KSV LIST

DIRECT EDIT F1

This function key edits the KSV.
\rightarrow Rotary key Select the KSV to be edited with the arrow.
\rightarrow The Edit screen is displayed. \rightarrow Rotary key Edit KSV.

SELECT KSV F2

This function key replaces the current KSV with the KSV frequently used.
\rightarrow Rotary key Select the KSV to be changed with the arrow, and then execute.
\rightarrow Rotary key Select from six frequently used KSV lists, and then execute.

* It is necessary to create frequently used KSV lists in advance. They can freely be created in 4 to 6 of SELECT KSV MODE using the F1 (EDIT) key. (Because predetermined values are already set in 1 to 3 , they cannot be edited.)

CHANGE F3

This function key edits the sequence of KSV lists.
\rightarrow Select F3 CHANGE. \rightarrow Rotary key Select the KSV list to be replaced with the arrow.
\rightarrow Rotary key Select the KSV list to be replaced with the arrow.

6.3.12 Setting the Communication Port

Set the communication port of the VA-1809.
\rightarrow Press F1 four times. PAGE $5 \rightarrow$ Rotary key Select an item.
\rightarrow Press Rotary key or ENTER. Check/uncheck

(1) Enable

Whether RS-232C or LAN is to be used is set here.
(2) RS SPEED

Set the baud rate of the RS-232C.

Check	Description
9600	Sets a baud rate of 9600 bps.
19200	Sets a baud rate of 19200 bps.
38400	Sets a baud rate of 38400 bps.
57600	Sets a baud rate of 57600 bps.
115200	Sets a baud rate of 115200 bps.

(3) RS DATA LENGTH

Set the number of data bits of the RS-232C.

Check	Description
7	Sets the number of data bits to 7 bits.
8	Sets the number of data bits to 8 bits.

(4) RS PARITY

Set the parity bit of the RS-232C.

Check	Description
NONE	Sets the parity bit to "none."
EVEN	Sets the parity bit to "even."
ODD	Sets the parity bit to "odd."

(5) RS STOP

Set the number of stop bits of the RS-232C.

Check	Description
1	Sets the number of stop bits to 1 bit.
2	Sets the number of stop bits to 2 bits.

(6) IP ADDRESS

The IP address of the LAN is set here.

(7) PORT

The LAN port is set here.

6.4 SETUP (Others)

6.4.1 VERSION INFO

The version information of the VA-1809 can be displayed.

$$
\text { OSD hidden state } \rightarrow \text { SETUP } \rightarrow \text { F3 VERSION INFO }
$$

6.4.2 INITIALIZE

The built-in data and configuration data of the VA-1809 can be initialized, and the card can be initialized (erased).
OSD hidden state \rightarrow SETUP \rightarrow F4 INITIALIZE

(1) INIT CONFIG (Initialization of Configuration Data)

Among setup data, this function key restores the configuration data and display data to the default settings.
\rightarrow F1 INIT CONFIG \rightarrow F1 OK or F 2 CANCEL
(2) INIT PROGRAM (Initialization of Built-In Program Data)

This function key restores built-in program data to the default settings.
\rightarrow F2 INIT PROGRAM \rightarrow F1 OK or F2 CANCEL
(3) INIT CARD (Erasing the Card)

This function key erases the data on the card inserted in the VA-1809.
\rightarrow F3 INIT CARD \rightarrow F1 OK or F2 CANCEL

6.5 SAVE

The SAVE MENU is used to save the programs and analysis data on a CF card or in the RAM contained in the VA-1809 main unit. The current data can be saved by pressing the SAVE button in any status.
The menu tree is as shown below.

6.5.1 CONNECTED EDID

This procedure in this section is for saving the EDIDs of the monitor connected to the HDMI output connector as programs on a CF card or in the RAM contained in the VA-1809 main unit.
SAVE \rightarrow F1 CONNECTED EDIT \rightarrow Use the Rotary key to select the program number.
\rightarrow F1 OK \rightarrow Use the Rotary key to edit the program name.
\rightarrow F4 RAM/CARD/BOTH selection \rightarrow SAVE OK

* The RAM (internal RAM), CF card or both the internal RAM and CF card must be selected as the place where the program is to be saved.
* When saving data in an existing program and thereby overwriting the data in that program, a confirmation window will appear. Press F1 to save the data or F2 to cancel.

6.5.2 PROGRAM GROUP

This procedure in this section is for saving group data edited in "Creating groups" on page 145.
SAVE \rightarrow F2 PROGRAM GROUP \rightarrow Use the Rotary key to input the group name.
\rightarrow SAVE OK

* Group data can be saved on CF cards only. Data is saved on these cards under filenames with the .Ist extension. For details on where the files are saved, refer to "1.4.4 Storage locations of registered data" on page 4.
* When saving data in an existing program and thereby overwriting the data in that program, a confirmation window will appear. Press F1 to save the data or F2 to cancel.

6.5.3 ANALYSIS DATA

The procedure in this section is for saving the measurement details of all the items for "ANALYZE (measurement result display methods)" described on page 21 on CF cards.

SAVE \rightarrow F3 ANALYSIS DATA \rightarrow Use the Rotary key to input the data name.
\rightarrow SAVE OK

* Analysis data can be saved on CF cards only. Data is saved on these cards under filenames with the .log extension. For details on where the files are saved, refer to "1.4.4 Storage locations of registered data" on page 4.
* When saving data in an existing program and thereby overwriting the data in that program, a confirmation window will appear. Press F1 to save the data or F2 to cancel.
* The analysis data available at the instant when the SAVE button is pressed is saved.

6.5.4 CONFIG DATA

The procedure in this section is for saving the equipment settings of the VA-1809 which were set in "6.3 SETUP (CONFIG SETUP)" on page 151.

SAVE \rightarrow F4 CONFIG DATA \rightarrow Use the Rotary key to input the data name.
\rightarrow SAVE OK

* Config data can be saved on CF cards only. Data is saved on these cards under filenames with the .cfg extension. For details on where the files are saved, refer to "1.4.4 Storage locations of registered data" on page 4.
* When saving data in an existing program and thereby overwriting the data in that program, a confirmation window will appear. Press F1 to save the data or F2 to cancel.

7.1 ANALYSIS ERROR (displayed in red) tables

7.1.1 Video Timing

Item	Description
Pixel Clock	When the InfoFrame AVI Video Code is 1 to 59 , the pixel clock frequency is not within $\pm 0.5 \%$ of the value prescribed by the format specified in Video Code.
H Frequency	When the InfoFrame AVI Video Code is 1 to 59 , the H frequency is not within $\pm 0.5 \%$ of the value prescribed by the format specified in Video Code.
V Frequency	When the InfoFrame AVI Video Code is 1 to 59 , the V frequency is not within $\pm 0.5 \%$ of the value prescribed by the format specified in Video Code.
H Total Pixels	When the InfoFrame AVI Video Code is 1 to 59 , the total number of H pixels is at variance from the value prescribed by the format specified in Video Code.
H Active Pixels	When the InfoFrame AVI Video Code is 1 to 59 , the number of H active pixels is at variance from the value prescribed by the format specified in Video Code.
H Sync Pixels	When the InfoFrame AVI Video Code is 1 to 59 , the number of H sync pixels is at variance from the value prescribed by the format specified in Video Code.
H Back Porch Pixels	When the InfoFrame AVI Video Code is 1 to 59 , the number of H back porch pixels is at variance from the value prescribed by the format specified in Video Code.
H Front Porch Pixels	When the InfoFrame AVI Video Code is 1 to 59 , the number of H front porch pixels is at variance from the value prescribed by the format specified in Video Code.
H Sync Polarity	When the InfoFrame AVI Video Code is 1 to 59 , the H sync polarity is at variance from what is prescribed by the format specified in Video Code.
\checkmark Total Lines	When the InfoFrame AVI Video Code is 1 to 59 , the total number of V lines is at variance from the value prescribed by the format specified in Video Code.
V Active Lines	When the InfoFrame AVI Video Code is 1 to 59 , the number of V active lines is at variance from the value prescribed by the format specified in Video Code.
\checkmark Sync Lines	When the InfoFrame AVI Video Code is 1 to 59 , the number of V sync lines is at variance from the value prescribed by the format specified in Video Code.
V Back Porch Lines	When the InfoFrame AVI Video Code is 1 to 59 , the number of V back porch lines is at variance from the value prescribed by the format specified in Video Code.
V Front Porch Lines	When the InfoFrame AVI Video Code is 1 to 59, the number of V front porch lines is at variance from the value prescribed by the format specified in Video Code.
V Sync Polarity	When the InfoFrame AVI Video Code is 1 to 59 , the V sync polarity is at variance from what is prescribed by the format specified in Video Code.
Interlace	When the InfoFrame AVI Video Code is 1 to 59, the interlace system is at variance from the value prescribed by the format specified in Video Code.

For details on the timing data ratings, refer to "7.4 AVI InfoFrame Video Code tables" on page 186.

7.1.2 AVI InfoFrame

Item	Description
InfoFrame Version Number	Not 0x02.
Length of AVI InfoFrame	Not 0x0d.
Checksum	The lower 8 bits of the value obtained by adding up AVI InfoFrame Type Code + AVI InfoFrame Version Number + Length of AVI InfoFrame + CheckSum are not 0.
RGB or YCbCr	Y1, Y0 of AVI InfoFrame are not applicable to the color systems (RGB, YCbCr422 or YCbC444) supported by the program EDID.
Active Format Aspect	AVI InfoFrame Active Format Aspect (R) is not 0x08 to 0x0b.
Picture Aspect	AVI InfoFrame Picture Aspect (M) is 0x02. Alternatively, with an InfoFrame AVI Video Code of 1 to 59, this value is at variance from the value prescribed by the format specified in Video Code.
Video Code	When this value is 1 to 59, an error occurs in Input Video Timing.
Repetition	When the InfoFrame AVI Video Code is 1 to 59, this value is at variance from the value prescribed by the format specified in Video Code.
Rsv of Data Byte1	None of the values of the reserve bits of Data Byte 1 is 0.
Rsv of Data Byte3	None of the values of the reserve bits of Data Byte 2 is 0.
Rsv of Data Byte4	None of the values of the reserve bits of Data Byte 4 are 0.
Rsv of Data Byte5	None of the values of the reserve bits of Data Byte 5 is 0.
NO AVI InfoFrame	No AVI InfoFrame.

7.1.3 SPD InfoFrame

Item	Description
Checksum	The lower 8 bits of the value obtained by adding up SPD InfoFrame Type Code + SPD InfoFrame Version Number + Length of SPD InfoFrame + CheckSum is 0.

7.1.4 Audio InfoFrame

Item	Description	
InfoFrame Version Number	Not 0x01.	
Length of Audio InfoFrame	Not 0x0A.	
Checksum	The lower 8 bits of the value obtained by adding up Audio InfoFrame Type Code + Audio InfoFrame Version Number + Length of Audio InfoFrame + CheckSum is 0 .	
Audio Coding Type	Audio InfoFrame: Audio Coding Type (CT) value is not 0 .	
Audio Channel Count	Audio InfoFrame: The combination of the Audio Channel Count (CC) and Speaker Placement (CA) settings is not correct. (For details, refer to the table below.)	
	Audio Channel Count (CC)	Speaker Placement (CA)
	0x00	Greater than 0x1F
	0x01	Not 0x00.
	0x02	Not 0x01, 0x02 or 0x04.
	0x03	Not 0x03, 0x05, 0x06, 0×08 or 0×14.
	0x04	Not 0x07, 0x09, 0x0A, 0x0C, 0x15, 0x16 or 0x18.
	0x05	Not $0 \times 0 \mathrm{~B}, 0 \times 0 \mathrm{D}, 0 \times 0 \mathrm{E}, 0 \times 10,0 \times 17,0 \times 19$, $0 \times 1 \mathrm{~A}$ or $0 \times 1 \mathrm{C}$.
	0x06	Not $0 \times 0 \mathrm{~F}, 0 \times 11,0 \times 12,0 \times 1 \mathrm{~B}, 0 \times 1 \mathrm{D}$ or $0 \times 1 E$
	0x07	Not 0x13 or 0x1F.
Sampling Frequency	Audio InfoFrame: The value of Sampling Frequency (SF) for Audio Channel Count Audio InfoFrame is not 0 .	
Sample Size	Audio InfoFrame: The value of Sampling Size (SS) for Audio InfoFrame is not 0.	
Speaker Placement	Audio InfoFrame: Speaker Placement (CA) is greater than 0x1F.	
Level Shift Value	Audio InfoFrame: Speaker Placement (CA) is 0 . Audio InfoFrame: Level Shift Value (LSV) is not 0 .	
Down-mix Inhibit Flag	Audio InfoFrame: Speaker Placement (CA) is 0 . Audio InfoFrame: Down-mix Inhibit Flag (DM_INH) is 0×01 (Prohibited).	
Rsv of Data Byte1	None of the values of the reserve bits of Audio InfoFrame Data Byte 1 is 0.	
Rsv of Data Byte2	None of the values of the reserve bits of Audio InfoFrame Data Byte 2 is 0 .	
Rsv of Data Byte6	None of the values of the reserve bits of Audio InfoFrame Data Byte 6 is 0 .	
Rsv of Data Byte7	None of the values of the reserve bits of Audio InfoFrame Data Byte 7 is 0 .	
Rsv of Data Byte8	None of the values of the reserve bits of Audio InfoFrame Data Byte 8 is 0 .	
Rsv of Data Byte9	None of the values of the reserve bits of Audio InfoFrame Data Byte 9 is 0 .	
Rsv of Data Byte10	None of the values of the reserve bits of Audio InfoFrame Data Byte 10 is 0 .	
No Audio InfoFrame	No Audio InfoFrame when Audio signals are input.	

7.1.5 MPEG InfoFrame

Item	Description
Checksum	The lower 8 bits of the value obtained by adding up Mpeg InfoFrame Type Code + Mpeg InfoFrame Version Number + Length of Mpeg InfoFrame + CheckSum is not 0.
Rsv of Data Byte6	Mpeg InfoFrame: None of the values of the reserve bits of Data Byte 6 is 0.
Rsv of Data Byte7	Mpeg InfoFrame: None of the values of the reserve bits of Data Byte 7 is 0.
Rsv of Data Byte8	Mpeg InfoFrame: None of the values of the reserve bits of Data Byte 8 is 0.
Rsv of Data Byte9	Mpeg InfoFrame: None of the values of the reserve bits of Data Byte 9 is 0.
Rsv of Data Byte10	Mpeg InfoFrame: None of the values of the reserve bits of Data Byte 10 is 0.

7.1.6 ACP Packet

Item	Description
ACP_TYPE	Greater than 2. Alternatively, ACP_TYPE is 2, and ISRC1 is not sent.
DVD-Audio_Type_Dependent Generation	ACP_TYPE is 0×02 (DVD), and DATDG is not 0×01. Alternatively, ACP_TYPE is other than 0×02 (DVD), and DATDG is not 0×00.
Copy_Permission	ACP_TYPE is not 0×02 (DVD), and Copy_Permission is not 0 .
Copy_Number	ACP_TYPE is not 0×02 (DVD), and Copy_number is not 0 . Alternatively, ACP_TYPE is 0×02 (DVD), Copy_Permission is not 0×02, and Copy_number is not 0 .
Quality	ACP_TYPE is not 0×02 (DVD), and Quality is not 0 . Alternatively, ACP_TYPE is 0×02 (DVD), Copy_Permission is not 0×02, and Quality is not 0 .
Transaction	ACP_TYPE is not 0×02 (DVD), and Transaction is not 0 .
Rsv of Header Byte2	None of the values of the reserve bits of Header Byte 2 is 0.
Rsv of Data Byte2-27	None of the values of the reserve bits of Data Bytes 16-27 is 0 .

7.1.7 ISRC1 Packet

Item	Description
Rsv of Header Byte1	None of the values of the reserve bits of ISRC1 Packet Header Byte 1 is 0.
Rsv of Header Byte2	None of the values of the reserve bits of ISRC1 Packet Header Byte 2 is 0.
Rsv of Data Byte16-27	None of the values of the reserve bits of ISRC1 Packet Data Bytes $16-27$ is 0.
NO ISRC1 Packet	ACP Packet ACP Type is 0×02 (DVD), and ISRC1 is not sent.

7.1.8 ISRC2 Packet

Item	Description
Rsv of Header Byte1	None of the values of the reserve bits of ISRC2 Packet Header Byte 1 is 0.
Rsv of Header Byte2	None of the values of the reserve bits of ISRC2 Packet Header Byte 2 is 0.
Rsv of Data Byte16-27	None of the values of the reserve bits of ISRC2 Packet Data Bytes 16-27 is 0.
NO ISRC2 Packet	ISRC2 Packet is not sent when ISRC1 Packet ISRC1_Cont is 1.

7.1.9 Channel Status Bit

Item	Description
Professional or Consumer	The Pro or Consumer setting of Channel Status Block is not 0 (Consumer).
Sampling frequency	Sampling Frequency (SF) is not one of the following: $0 \times 00,0 \times 02,0 \times 03,0 \times 08,0 \times 0 A, 0 \times 0 \mathrm{C}, 0 \times 0 \mathrm{E}$
CSB Repetition Period	The B Bit period of Channel Status Block is not every 192 samples.

7.1.10 Audio Timing

Item	Description
N	N is not within the range of $128^{*} \mathrm{FS} / 1500 \mathrm{~Hz} \geq \mathrm{N} \geq 128^{*} \mathrm{FS} / 300 \mathrm{~Hz}$.
CTS	CTS is not within $\pm 0.2 \%$ of the value obtained from (T_TMDS_clock* N$) /\left(128^{*} \mathrm{FS}\right)$.
No Audio	No Audio input. Audio InfoFrame present.

* An error also results for N or CTS when the sampling frequency of Channel Status Bit is abnormal.

7.1.11 HDCP

Item	Description
AKSV	AKSV does not consist of twenty 1's and twenty 0's.
BKSV	BKSV does not consist of twenty 1's and twenty 0's.
DEVICE_CNT	The DEVICE_CNT value is greater than the maximum (127).
DEPTH	The DEPTH value is greater than the maximum (7).
Decription	Authentication is completed, but operation fails to move on to decryption.

7.1.12 HDCP Authentication VA-1809->Sink

Item	Description
AKSV	AKSV is not composed of twenty "1s" and twenty "0s."
BKSV	BKSV is not composed of twenty "1s" and twenty "0s."
DEVICE_CNT	DEVICE_CNT value has exceeded the MAX value (127).
DEPTH	DEPTH value has exceeded the MAX value (7).
Ri, Ri'	The Ri value is different from the Ri' value.

7.1.13 HDCP Authentication Part3 VA-1809->Sink

Item	Description
Ri, Ri'	The Ri value is different from the Ri' value.

7.1.14 HDCP Repeater Sequence

Item	Description
1st DownStream Connect	No sink device is connected.
1st DDC Line Status	The DDC line is abnormal.
1st YCbCr Support	Sink devices are not supported by YcbCr.
1st BKSV Check	BKSV is abnormal.
1st Link Check	R_{0} is different from $R_{0}{ }^{\prime}$.
2nd KSV FIFO Ready	Sink device's FIFO Ready does not turn ON.
2nd Depth Check	The Depth value read from the sink device is 7 or larger.
2nd Count Check	The Count value read from the sink device is 128 or larger.
2nd Compere V	V is different from V^{\prime}.

7.1.15 Compliance Test Item Check

■ EDID Related Behavior

Compliance test items 7-1 can be checked.
The items to be inspected vary depending on the size of the EDID data of the program set in the VA-1809.

Item	Classification	Description
128 bytes	Error	A combination of $<0 \times A 0+$ ack $><0 \times 00+a c k>$ and <0xA1+ack> cannot be detected by the DDC line command.
256 bytes	Error	A combination of $<0 \times A 0+$ ack $><0 \times 00+$ ack $>$ and <0xA1+ack> cannot be detected by the DDC line command. All areas of the EDID that were set were not read.
	Warning	An area exceeding the EDID size that has been set was read.
257 bytes or more	Error	A combination of $<0 \times 60+$ ack $><0 \times 01+$ ack $>$ and <0xA0+ack> cannot be detected by the DDC line command.
	Warning	An area exceeding the EDID size that has been set was read.

- Packet Type

Compliance test items 7-19 can be checked.
The following packets are checked.

Item	Description
ACP Packet	See page 178, "7.1.6 ACP Packet."
ISRC1 Packet	See page 178, "7.1.7 ISRC1 Packet."
ISRC2 Packet	See page 179, "7.1.8 ISRC2 Packet."

RGB to RGB-only Sink

Compliance test items 7-23 can be checked.
"RGB or YCbCr" of AVI InfoFrame is not set to "0 (RGB)."

YCbCr to YCbCr Sink

Compliance test items 7-24 can be checked.
"RGB or YCbCr" of AVI InfoFrame is not set to "1" or "2 (YCbCr)."

Video Format Timing

Compliance test items 7-25 can be checked.
See page 175, "7.1.1 Video Timing."

■ Pixel Repetition

Compliance test items 7-26 can be checked.
When the video code of InfoFrame AVI is (1-59), the repetition value of InfoFrame is different from the value defined in the format to be specified in the video code.
Or, the specified repetition value and the repetition value of the actual image are different.

AVI InfoFrame

Compliance test items 7-27 can be checked.
See page 176, "7.1.2 VI InfoFrame."

- ACR

Compliance test items 7-29 can be checked.
N and CTS on page 179, "7.1.10 Audio Timing" are checked.

Audio InfoFrame

Compliance test items 7-31 can be checked.
See page 177, "7.1.4 Audio InfoFrame."

Audio Packet Layout

Compliance test items 7-32 can be checked.
The "Audio Channel Count" value of Audio InfoFrame and the Layout value of the Audio Sample Packet do not match.

- Interoperability with DVI

Compliance test items 7-33 can be checked.
There is an input to the VA-1809 although an EDID other than HDMI is set in the VA-1809.

EDID Readable

Compliance test items 8-1 can be checked.

Item	Description
EDID Block 0 Size	The size of EDID block 0 is not 128 bytes.
Extension Flag	The extension flag is set to "0."
Extension Block Num	The number of extension blocks is different from the extension flag.

EDID VESA Structure

Compliance test items 8-2 can be checked.

Item	Description
EDID Block 0 Header	The header of the EDID is not 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF or 0x00.
EDID Version, Revision	"Version" and "Revision" of the EDID are not 0x01 and 0x03, respectively.
Video Information Byte	"Basic Display Parameter/Feature" of the EDID is set to "Analog Interface."
Preferred Timing bit is set	"Preferred Timing Mode" of the EDID is not set to "1."
Detailed Timing Descriptions	First two bytes in the "1st Detailed Timing Section" of the EDID are all set to "0x00."
	"Monitor Range Limits" and "Monitor Name Descriptor" are not included in the "Detailed Timing Section" of the EDID.
	"Monitor Descriptor" is before "Detailed Timing Descriptor" of the EDID.
EDID Block 1	The CEA timing extension or block map is not assigned to block 1 of the EDID.
Block Map	The block map and the header of each block do not match. (It is checked when the extension count is greater than "1.")
	The unused area of the block map is not set to "0."
Block Checksum	The checksum value is incorrect.

EDID CEA Structure

Compliance test items 8-3 can be checked.

Item	Description
Revision Number	The revision number is not " 0×03."
Data structure	The tag code of the data block is " 0 ," " 5 ," " 6 " or " 7 (reserved)." The value of Byte\#2 (Byte number offset "d" where Detailed Timing data begins) of the CEA timing extension is incorrect when converted from the length of each data block.
Audio Data Block	If there is an audio data block, bit\#6 (audio) in byte\#3 of the 1st CEA timing extension is not set to "1." (Basic audio is not supported.)
	The audio data block length is not a multiple of 3.
	Bit\#7 in the 1st byte and bit\#7 in the 2nd byte of a block in the CEA short audio descriptor are not set to "0" (reserved area).
	When the audio format code of a block of the CEA short audio descriptor is linear PCM, bit\#7 through bit\#3 in the 3rd byte are not set to "0" (reserved area).
Speaker Allocation Data Block	If there is a speaker allocation data block, the speaker allocation data block length is not set to " 3 ."
	Bit\#7 in the 1st byte and all bits in the 2nd byte and 3rd byte are not set to " 0 " (reserved area).
	There are two or more speaker allocation data blocks in the 1st CEA timing extension. In addition, there are speaker allocation data blocks in other CEA timing extensions.
	There is no speaker allocation data block although multi-channel audio is supported by the CEA short audio descriptor.
Detailed Timing Descriptor	When the first two bytes of the detailed timing descriptor are set to " 0 ," all subsequent block data (other than the checksum bit) are not set to " 0 ."
HDMI Vendor-Specific Data Block	There is no data block whose first four bytes are set to 0b011xxxxx, 0x03, 0x0C or 0×00 in the 1st CEA timing extension. (There is no particular specification for x .) (There is no HDMI vendor specific data block.)
	The physical address is incorrect. (The bits other than the upper four bits of the 1st byte in the physical address are not all set to "0.")
	Byte 6 in the HDMI vendor-specific data block is not 0×80 or 0×00.
	The reserved area of the extension field in the HDMI vendor-specific data block is not set to " 0 ."
	There is a data block whose first four bytes are set to 0b011xxxxx, 0x03, 0x0C or 0x00 in blocks other than the 1st CEA timing extension. (There is no specific specification for x .) (There is an HDMI vendor specific data block.)
Others	Bit\#7 through bit\#4 (number of preferred timings plus flags) in byte\#3 of all CEA timing extension blocks are not the same.
Native Format	The number of detailed timing descriptors in the EDID is smaller than the number of native formats.

7.2 ANALYSIS OVER LIMIT (yellow display) table

Video Timing

Item	Description			
Pixel Clock	When the InfoFrame AVI Video Code is not 1 to 59 , the pixel clock frequency is not in the 25.000 MHz to 165.000 MHz range.			
H Total Pixels	(1) When the InfoFrame AVI Video Code is not 1 to 59, the total number of H pixels is not a multiple of 2.			
(2) When the InfoFrame AVI Video Code is not 1 to 59, the total				
number of H pixels is not in the 200 to 2500 range.				
(3) When the InfoFrame AVI Video Code is not 1 to 59 and the H				
Period is greater than 2144 pixels, Hsync + H Back Porch is not \geq				
H period -2048.		$	$	(1) When the InfoFrame AVI Video Code is not 1 to 59, the number of
:---				
H Active pixels is not a multiple of 2.				

7.3 ERROR CODE table

ERROR CODE	Description
0x80000026	Memory card read error
0x80000027	Memory card write protected
0x80000028	Memory card is not inserted.
0x80000029	Memory card is not formatted.
0x8000002a	Memory capacity of memory card exceeded.
0x80000035	Flash ROM write error
0x80000100	File open error
0x80000101	File write error
0x80000110	VA-1809 information write error
0x80000111	Log information write error
0x80000112	HDMI information write error
0x80000120	Input timing data write error
0x80000121	Audio timing data write error
0x80000122	HDCP data write error
0x80000130	Data write error in AVI InfoFrame data for GUI
0x80000131	Data write error in SPD InfoFrame data for GUI
0x80000132	Data write error in Audio InfoFrame data for GUI
0x80000133	Data write error in MPEG InfoFrame data for GUI
0x80000134	Data write error in ACP Packet data for GUI
0x80000135	Data write error in ISRC1 Packet data for GUI
0x80000136	Data write error in ISRC2 Packet data for GUI
0x80000137	Data write error in Channel Status Bit data for GUI
0x80000140	Data write error in AVI InfoFrame data for HEX
0x80000141	Data write error in SPD InfoFrame data for HEX
0x80000142	Data write error in Audio InfoFrame data for HEX
0x80000143	Data write error in MPEG InfoFrame data for HEX
0x80000144	Data write error in ACP Packet data for HEX
0x80000145	Data write error in ISRC1 Packet data for HEX
0x80000146	Data write error in ISRC2 Packet data for HEX
0x80000147	Data write error in Channel Status Bit data for HEX

7.4 AVI InfoFrame Video Code tables

Video Code	1		2		3		4		5		6	
Name	640×480p@59.94/60		720×480p@59.94/60		720×480p@59.94/60		1280×720p@59.94/60		1920×1080i@59.94/60		1440×480i@59.94/60	
Table No.	1	2	1	2	1	2	1	2	1	2	1	2
Pixel Clock	25.175	25.200	27.000	27.027	27.000	27.027	74.175	74.250	74.175	74.250	27.000	27.027
H Frequency	31.469	31.500	31.469	31.500	31.469	31.500	44.955	45.000	33.716	33.750	15.734	15.750
V Frequency	59.940	60.000	59.940	60.000	59.940	60.000	59.939	60.000	59.939	60.000	59.940	60.000
H Sync	96	96	62	62	62	62	40	40	44	44	124	124
H Total	800	800	858	858	858	858	1650	1650	2200	2200	1716	1716
H Active	640	640	720	720	720	720	1280	1280	1920	1920	1440	1440
V Sync	2	2	6	6	6	6	5	5	5	5	3	3
V Back Porch	33	33	30	30	30	30	20	20	15	15	15	15
H Back Porch	48	48	60	60	60	60	220	220	148	148	114	114
V Total	525	525	525	525	525	525	750	750	1125	1125	525	525
V Active	480	480	480	480	480	480	720	720	1080	1080	480	480
H Front Porch	16	16	16	16	16	16	110	110	88	88	38	38
V Front Porch	10	10	9	9	9	9	5	5	2	2	4	4
Scan	Progressive	Interlace	Interlace	Interlace	Interlace							
Hsyncpolarity	nega	Nega	Nega	Nega	Nega	Nega	Posi	Posi	Posi	Posi	Nega	Nega
Vsyncpolarity	Nega	Nega	Nega	Nega	Nega	Nega	Posi	Posi	Posi	Posi	Nega	Nega
AspectRatio	4:3	4:3	4:3	4:3	16:9	16:9	16:9	16:9	16:9	16:9	4:3	4:3

Video Code	7		8				9				10	
Name	1440×480i@59.94/60		1440×240p@59.94/60				1440×240p@59.94/60				2880×480i@59.94/60	
Table No.	1	2	1	2	3	4	1	2	3	4	1	2
Pixel Clock	27.000	27.027	27.000	27.027	27.000	27.027	27.000	27.027	27.000	27.027	54.000	54.054
H Frequency	15.734	15.750	15.734	15.750	15.734	15.750	15.734	15.750	15.734	15.750	15.734	15.750
\checkmark Frequency	59.940	60.000	59.826	59.886	60.054	60.115	59.826	59.886	60.054	60.115	59.940	60.000
H Sync	124	124	124	124	124	124	124	124	124	124	248	248
H Total	1716	1716	1716	1716	1716	1716	1716	1716	1716	1716	3432	3432
H Active	1440	1440	1440	1440	1440	1440	1440	1440	1440	1440	2880	2880
V Sync	3	3	3	3	3	3	3	3	3	3	3	3
V Back Porch	15	15	15	15	15	15	15	15	15	15	15	15
H Back Porch	114	114	114	114	114	114	114	114	114	114	228	228
\checkmark Total	525	525	263	263	262	262	263	263	262	262	525	525
\checkmark Active	480	480	240	240	240	240	240	240	240	240	480	480
H Front Porch	38	38	38	38	38	38	38	38	38	38	76	76
V Front Porch	4	4	5	5	4	4	5	5	4	4	4	4
Scan	Interlace	Interlace	Progressive	Interlace	Interlace							
Hsyncpolarity	Nega											
Vsyncpolarity	Nega											
AspectRate	16:9	16:9	4:3	4:3	4:3	4:3	16:9	16:9	16:9	16:9	4:3	4:3

Video Code	11		12				13				14	
Name	2880×480i@59.94/60		2880×240p@59.94/60				2880×240p@59.94/60				1440×480p@59.94/60	
Table No.	1	2	1	2	3	4	1	2	3	4	1	2
Pixel Clock	54.000	54.054	54.000	54.054	54.000	54.054	54.000	54.054	54.000	54.054	54.000	54.054
H Frequency	15.734	15.750	15.734	15.750	15.734	15.750	15.734	15.750	15.734	15.750	31.469	31.500
\checkmark Frequency	59.940	60.000	59.826	59.886	60.054	60.115	59.826	59.886	60.054	60.115	56.940	60.000
H Sync	248	248	248	248	248	248	248	248	248	248	124	124
H Total	3432	3432	3432	3432	3432	3432	3432	3432	3432	3432	1716	1716
H Active	2880	2880	2880	2880	2880	2880	2880	2880	2880	2880	1440	1440
V Sync	3	3	3	3	3	3	3	3	3	3	6	6
V Back Porch	15	15	15	15	15	15	15	15	15	15	30	30
H Back Porch	228	228	228	228	228	228	228	228	228	228	120	120
V Total	525	525	263	263	262	262	263	263	262	262	525	525
\checkmark Active	480	480	240	240	240	240	240	240	240	240	480	480
H Front Porch	76	76	76	76	76	76	76	76	76	76	32	32
V Front Porch	4	4	5	5	4	4	5	5	4	4	9	9
Scan	Interlace	Interlace	Progressive									
Hsyncpolarity	Nega											
Vsyncpolarity	Nega											
AspectRate	16:9	16:9	4:3	4:3	4:3	4:3	16:9	16:9	16:9	16:9	4:3	4:3

VideoCode	15		16		17	18	19	20	21	22
Name	1440×480p@59.94/60		1920×1080p@59.94/60		720×576p@50	720×576p@50	1280×720p@50	1920×1080i@50	1440×576i@50	1440×576i@50
TableNo.	1	2	1	2	1	1	1	1	1	1
PixelClock	54.000	54.054	148.350	148.500	27.000	27.000	74.250	74.250	27.000	27.000
HFrequency	31.469	31.500	67.432	67.500	31.250	31.250	37.500	28.125	15.625	15.625
VFrequency	56.940	60.000	59.939	60.000	50.000	50.000	50.000	50.000	50.000	50.000
HSync	124	124	44	44	64	64	40	44	126	126
HTotal	1716	1716	2200	2200	864	864	1980	2640	1728	1728
HActive	1440	1440	1920	1920	720	720	1280	1920	1440	1440
VSync	6	6	5	5	5	5	5	5	3	3
VBackPorch	30	30	36	36	39	39	20	15	19	19
HBackPorch	120	120	148	148	68	68	220	148	138	138
VTotal	525	525	1125	1125	625	625	750	1125	625	625
VActive	480	480	1080	1080	576	576	720	1080	576	576
HFrontPorch	32	32	88	88	12	12	440	528	24	24
VFrontPorch	9	9	4	4	5	5	5	2	2	2
Scan	Progressive	Interlace	Interlace	Interlace						
Hsyncpolarity	Nega	Nega	Posi	Posi	Nega	Nega	Posi	Posi	Nega	Nega
Vsyncpolarity	Nega	Nega	Posi	Posi	Nega	Nega	Posi	Posi	Nega	Nega
AspectRate	16:9	16:9	16:9	16:9	4:3	16:9	16:9	16:9	4:3	16:9

VideoCode	23			24			$\begin{array}{\|l} 25 \\ \hline 2880 \times 576 i @ 50 \end{array}$	$\begin{array}{\|l} 26 \\ \hline 2880 \times 576 i @ 50 \end{array}$	27		
Name	1440×288p@50			1440×288p@50					2880×288p@	50	
TableNo.	1	2	3	1	2	3	1	1	1	2	3
PixelClock	27.000	27.000	27.000	27.000	27.000	27.000	54.000	54.000	54.000	54.000	54.000
HFrequency	15.625	15.625	15.625	15.625	15.625	15.625	15.625	15.625	15.625	15.625	15.625
VFrequency	49.761	49.920	50.080	49.761	49.920	50.080	50.000	50.000	49.761	49.920	50.080
HSync	126	126	126	126	126	126	252	252	252	252	252
HTotal	1728	1728	1728	1728	1728	1728	3456	3456	3456	3456	3456
HActive	1440	1440	1440	1440	1440	1440	2880	2880	2880	2880	2880
VSync	3	3	3	3	3	3	3	3	3	3	3
VBackPorch	19	19	19	19	19	19	19	19	19	19	19
HBackPorch	138	138	138	138	138	138	276	276	276	276	276
VTotal	314	313	312	314	313	312	625	625	314	313	312
VActive	288	288	288	288	288	288	576	576	288	288	288
HFrontPorch	24	24	24	24	24	24	48	48	48	48	48
VFrontPorch	4	3	2	4	3	2	2	2	4	3	2
Scan	Progressive	Progressive	Progressive	Progressive	Progressive	Progressive	Interlace	Interlace	Progressive	Progressive	Progressive
Hsyncpolarity	Nega										
Vsyncpolarity	Nega										
AspectRate	4:3	4:3	4:3	16:9	16:9	16:9	4:3	16:9	4:3	4:3	4:3

VideoCode	28			$\begin{array}{\|l\|} \hline 29 \\ \hline 1440 \times 576 p @ 50 \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ \hline 1440 \times 576 p @ 50 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 31 \\ \hline 1920 \times 1080 p @ 50 \end{array}$	32		$\begin{array}{\|l\|} \hline 33 \\ \hline 1920 \times 1080 \mathrm{p} @ 25 \end{array}$	34	
Name	2880×288p@50						1920×1080p	@23.97/24		1920×1080	29.97/30
TableNo.	1	2	3	1	1	1	1	2	1	1	2
PixelClock	54.000	54.000	54.000	54.000	54.000	148.500	74.175	74.250	74.250	74.175	74.250
HFrequency	15.625	15.625	15.625	31.250	31.250	56.250	26.973	27.000	28.125	33.716	33.750
VFrequency	49.761	49.920	50.080	50.000	50.000	50.000	23.976	24.000	25.000	29.970	30.000
HSync	252	252	252	128	128	44	44	44	44	44	44
HTotal	3456	3456	3456	1728	1728	2640	2750	2750	2640	2200	2200
HActive	2880	2880	2880	1440	1440	1920	1920	1920	1920	1920	1920
VSync	3	3	3	5	5	5	5	5	5	5	5
VBackPorch	19	19	19	39	39	36	36	36	36	36	36
HBackPorch	276	276	276	136	136	148	148	148	148	148	148
VTotal	314	313	312	625	625	1125	1125	1125	1125	1125	1125
VActive	288	288	288	576	576	1080	1080	1080	1080	1080	1080
HFrontPorch	48	48	48	24	24	528	638	638	528	88	88
VFrontPorch	4	3	2	5	5	4	4	4	4	4	4
Scan	Progressive										
Hsyncpolarity	Nega	Nega	Nega	Nega	Nega	Posi	Posi	Posi	Posi	Posi	Posi
Vsyncpolarity	Nega	Nega	Nega	Posi							
AspectRate	16:9	16:9	16:9	4:3	16:9	16:9	16:9	16:9	16:9	16:9	16:9

VideoCode	35		36		37	38	39	40	41	42
Name	2880×480p@59.94/60		2880×480p@59.94/60		2880×576p@50	2880×576p@50	1920×1080i@50	1920×1080i@100	1280×720p@100	720×576p@100
TableNo.	1	2	1	2	1	1	1	1	1	1
PixelClock	108.000	108.108	108.000	108.108	108.000	108.000	72.000	148.500	148.500	54.000
Hfreq	31.469	31.5	31.469	31.5	31.25	31.25	31.25	56.25	75	62.5
Vfreq	59.94	60	59.94	60	50	50	50	100	100	100
Htotal	3432	3432	3432	3432	3456	3456	2304	2640	1980	864
Hactive	2880	2880	2880	2880	2880	2880	1920	1920	1280	720
Hsync	248	248	248	248	256	256	168	44	40	64
Hback	240	240	240	240	272	272	184	148	220	68
Hfront	64	64	64	64	48	48	32	528	440	12
Hpola	Nega	Nega	Nega	Nega	Nega	Nega	Posi	Posi	Posi	Nega
Vtotal	525	525	525	525	625	625	1250	1125	750	625
Vactive	480	480	480	480	576	576	1080	1080	720	576
Vsync	6	6	6	6	5	5	5	5	5	5
Vback	30	30	30	30	39	39	57	15	20	39
Vfront	9	9	9	9	5	5	23	2	5	5
Vpola	Nega	Posi	Posi	Nega						
Interlace	Progressive	Progressive	Progressive	Progressive	Progressive	Progressive	Interlace	Interlace	Progressive	Progressive
Aspect	4:3	4:3	16:9	16:9	4:3	16:9	16:9	16:9	16:9	4:3

VideoCode	43	44	45	46		47		48	
Name	720×576p@100	1440×576i@100	1440×576i@100	1920×1080i@119.88/120		1280×720p@119.88/120		1280×720p@119.88/120	
TableNo.	1	1	1	1	2	1	2	1	2
PixelClock	54.000	54.000	54.000	148.352	148.500	148.352	148.500	54.000	54.054
Hfreq	62.5	31.25	31.25	67.432	67.5	89.909	90	62.937	63
Vfreq	100	100	100	119.88	120	119.88	120	119.88	120
Htotal	864	1728	1728	2200	2200	1650	1650	858	858
Hactive	720	1440	1440	1920	1920	1280	1280	720	720
Hsync	64	126	126	44	44	40	40	62	62
Hback	68	138	138	148	148	220	220	60	60
Hfront	12	24	24	88	88	110	110	16	16
Hpola	Nega	Nega	Nega	Posi	Posi	Posi	Posi	Nega	Nega
Vtotal	625	625	625	1125	1125	750	750	525	525
Vactive	576	576	576	1080	1080	720	720	480	480
Vsync	5	3	3	5	5	5	5	6	6
Vback	39	19	19	15	15	20	20	30	30
Vfront	5	2	2	2	2	5	5	9	9
Vpola	Nega	Nega	Nega	Posi	Posi	Posi	Posi	Nega	Nega
Interlace	Progressive	Interlace	Interlace	Interlace	Interlace	Progressive	Progressive	Progressive	Progressive
Aspect	16:9	4:3	16:9	16:9	16:9	16:9	16:9	4:3	4:3

VideoCode	49		50		51		52	53	54	55
Name	720×480p@119.88/120		1440×480i@119.88/120		1440×480i@119.88/120		720×576p@200	720×576p@200	1440×576i@200	1440×576i@200
TableNo.	1	2	1	2	1	2	1	1	1	1
PixelClock	54.000	54.054	54.000	108.000	108.000	108.000	108.000	108.000	108.000	108.000
Hfreq	62.937	63	31.469	125	125	62.5	62.5	125	62.5	62.5
Vfreq	119.88	120	119.88	200	200	200	200	200	200	200
Htotal	858	858	1716	864	864	1728	1728	864	1728	1728
Hactive	720	720	1440	720	720	1440	1440	720	1440	1440
Hsync	62	62	124	64	64	126	126	64	126	126
Hback	60	60	114	68	68	138	138	68	138	138
Hfront	16	16	38	12	12	24	24	12	24	24
Hpola	Nega									
Vtotal	525	525	525	625	625	625	625	625	625	625
Vactive	480	480	480	576	576	576	576	576	576	576
Vsync	6	6	3	5	5	3	3	5	3	3
Vback	30	30	15	39	39	19	19	39	19	19
Vfront	9	9	4	5	5	2	2	5	2	2
Vpola	Nega									
Interlace	Progressive	Progressive	Interlace	Progressive	Progressive	Interlace	Interlace	Progressive	Interlace	Interlace
Aspect	16:9	16:9	4:3	4:3	16:9	4:3	16:9	16:9	4:3	16:9

VideoCode	56		57		58		59	
Name	720×480p@239.76/240		720×480p@239.76/240		720(1440) $\times 480$ @ $239.76 / 240$		720(1440)×480i@239.76/240	
TableNo.	1	2	1	2	1	2	1	2
PixelClock	108.000	108.108	108.000	108.108	108.000	108.108	108.000	108.108
Hfreq	125.874	126	125.874	126	62.937	63	62.937	63
Vfreq	239.76	240	239.76	240	239.76	240	239.76	240
Htotal	858	858	858	858	1716	1716	1716	1716
Hactive	720	720	720	720	1440	1440	1440	1440
Hsync	62	62	62	62	124	124	124	124
Hback	60	60	60	60	114	114	114	114
Hfront	16	16	16	16	38	38	38	38
Hpola	Nega							
Vtotal	525	525	525	525	525	525	525	525
Vactive	480	480	480	480	480	480	480	480
Vsync	6	6	6	6	3	3	3	3
Vback	30	30	30	30	15	15	15	15
Vfront	9	9	9	9	4	4	4	4
Vpola	Nega							
Interlace	Progressive	Progressive	Progressive	Progressive	Interlace	Interlace	Interlace	Interlace
Aspect	4:3	4:3	16:9	16:9	4:3	4:3	16:9	16:9

8
 Product specifications

8.1. Internal data

The VA-1809 contains ten sets of sample data as its internal data.
The default settings are shown below.

8.1.1 SAMPLE1

* The SAMPLE1 data serves as the EDID data when the power of the VA-1809 is OFF. The EDID data cannot be edited while the power of the VA-1809 is OFF.
(1) SINK
rx_mode=receiver hdmi_mode=hdmi hdcp_on=on
ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	OA	0B	OC	OD	OE	OF
00	00	FF	FF	FF	FF	FF	FF	00	06	8F	07	11	01	00	00	00
10	OC	OF	01	03	80	OC	09	78	OA	1E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8C	0A	D0	8A	20	E0	2D	10	10	3E
40	96	00	81	60	00	00	00	18	01	1D	80	18	71	1C	16	20
50	58	2 C	25	00	81	49	00	00	00	9E	00	00	00	FC	00	56
60	41	2D	31	38	30	39	OA	20	20	20	20	20	00	00	00	FD
70	00	17	3D	0D	2E	OF	00	0A	20	20	20	20	20	20	01	4C
80	02	03	20	71	49	82	05	04	01	10	11	14	13	1F	26	OF
90	1F	07	09	7F	07	83	2 F	00	00	66	03	OC	00	10	00	80
A0	01	1D	00	72	51	D0	1E	20	6E	28	55	00	81	49	00	00
B0	00	1E	D6	09	80	A0	20	E0	2D	10	10	60	A2	00	81	60
C0	00	08	08	18	8C	0A	D0	90	20	40	31	20	OC	40	55	00
D0	81	60	00	00	00	18	01	1D	80	D0	72	1C	16	20	10	2 C
E0	25	80	81	49	00	00	00	9E	01	1D	00	BC	52	D0	1E	20
F0	B8	28	55	40	81	49	00	00	00	1E	00	00	00	00	00	21

byte	Item	Setting
07-00	Headder	0x00FFFFFFFFFFFFF00
09-08	ID Manufacturer Name	0x8F06 = ATO
OB-OA	ID Product Code	0x1107h
OF-0C	ID Serial Number	0x00000001
10	Week of Manufacture	$0 \times 0 \mathrm{C}=12$
11	Year of Manufacture	$0 \times 0 \mathrm{~F}=2005$
12	ED D Version	$0 \times 01=$ ver. 1
13	EDID Revision	0x03 = Rev. 3
14	Video Input Definition Analog or Digital DFP1.X	$\begin{aligned} & 0 \times 80 \\ & 0 \mathrm{~b} 1=\text { Digital } \\ & 0 \mathrm{b0}=\text { not support } \end{aligned}$
15	Max. Horizontal Image Size	$0 \times 0 C=12 \mathrm{~cm}$
16	Max. Vertical Image Size	$0 \times 09=9 \mathrm{~cm}$
17	Display Transfer Characteristic (Gamma)	$0 \times 78=2.22$
18	[Feature Support] Standby (DPMS) Suspend (DPMS) Active Off/Very Low Power Display Type Standard Default Color Space sRGB Preferred Timing Mode is indicated in the first detailed timing block Default GTF supported	$\begin{aligned} & 0 \times 0 \mathrm{~A} \\ & 0 \mathrm{bO}=\text { not support } \\ & 0 \mathrm{bO}=\text { not support } \\ & 0 \mathrm{bO}=\text { not support } \\ & 0 \mathrm{~b} 1=\text { RGB color display } \\ & \text { Ob0 }=\text { not support } \\ & 0 \mathrm{~b} 1=\text { support } \\ & 0 \mathrm{bO}=\text { not support } \\ & \hline \end{aligned}$
22-19	[Color Characteristics] Red-x Red-y Green-x Green-y Blue-x Blue-y White-x White-y	$\begin{aligned} & 0 \times 57522928855659981 \text { EAC } \\ & 0 \times 280=0.594 \\ & 0 \times 15 C=0.349 \\ & 0 \times 11 F=0.339 \\ & 0 \times 262=0.521 \\ & 0 \times 09 F=0.158 \\ & 0 \times 048=0.162 \\ & 0 \times 122=0 \times 323 \\ & 0 \times 131=0.340 \end{aligned}$
23	[Established Timings 1] $720 \times 400 @ 70 \mathrm{~Hz}$ $720 \times 400 @ 88 \mathrm{~Hz}$ $640 \times 480 @ 6 \mathrm{~Hz}$ $640 \times 480 @ 67 \mathrm{~Hz}$ $640 \times 480 @ 72 \mathrm{~Hz}$ $640 \times 480 @ 75 \mathrm{~Hz}$ $800 \times 600 @ 56 \mathrm{~Hz}$ $800 \times 600 @ 60 \mathrm{~Hz}$	0x00 Ob0 = not support 0b0 = not support Ob0 = not support Ob0 = not support
24	$\begin{aligned} & \text { [Established Timings 2] } \\ & 800 \times 600 @ 72 \mathrm{~Hz} \\ & 800 \times 600 @ 75 \mathrm{~Hz} \\ & 832 \times 624 @ 75 \mathrm{~Hz} \\ & 1024 \times 768 \text { @ } 87 \mathrm{~Hz} \text { (Interlace) } \\ & 1024 \times 768 @ 60 \mathrm{~Hz} \end{aligned}$	0x00 Ob0 = not support 0b0 = not support Ob0 = not support 0b0 = not support Ob0 = not support

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& \hline 1024 \times 768 @ 70 \mathrm{~Hz} \\
\& 1024 \times 768 @ 75 \mathrm{~Hz} \\
\& 1280 \times 1024 @ 75 \mathrm{~Hz}
\end{aligned}
\] \& \[
\begin{aligned}
\& 0 \mathrm{bO}=\text { not support } \\
\& \mathrm{Ob0}=\text { not support } \\
\& \mathrm{ObO}=\text { not support }
\end{aligned}
\] \\
\hline 25 \& [Manufacturer's Reserved Timings]
\[
1152 \times 870 @ 75 \mathrm{~Hz}
\] \& \[
\begin{aligned}
\& 0 \times 00 \\
\& 0 \mathrm{b0} 0 \text { not support }
\end{aligned}
\] \\
\hline 27-26 \& Standard Timing Identification \#1 \& 0x0101 = Unused field in this section \\
\hline 29-28 \& Standard Timing Identification \#2 \& 0x0101 = Unused field in this section \\
\hline 2B-2A \& Standard Timing Identification \#3 \& 0x0101 = Unused field in this section \\
\hline 2D-2C \& Standard Timing Identification \#4 \& 0x0101 \(=\) Unused field in this section \\
\hline 2F-2E \& Standard Timing Identification \#5 \& 0x0101 = Unused field in this section \\
\hline 31-30 \& Standard Timing Identification \#6 \& 0x0101 = Unused field in this section \\
\hline 33-32 \& Standard Timing Identification \#7 \& 0x0101 = Unused field in this section \\
\hline 35-34 \& Standard Timing Identification \#8 \& 0x0101 = Unused field in this section \\
\hline \(47-36\)
\(37-36\)
\(3 A-38\)
\(3 D-3 B\)
\(41-3 E\)
\(44-42\)
45
46
47 \& \begin{tabular}{l}
[Detailed Timing Descriptions \#1] \\
Pixel Clock \\
Horizontal Active Pixels \\
Horizontal Blanking Pixels \\
Vertical Acrive Lines \\
Vertical Blanking Lines \\
Horizontal sync offset \\
Horizontal sync pulse width \\
Vert sync offset \\
Vert sync pulse width \\
Horizontal Image Size \\
Vertical Image Size \\
Horizontal Border \\
Vertical Border \\
Interlace \\
Stereo Mode \\
sync signal description1 \\
sync signal description2 \\
sync signal description3
\end{tabular} \& \[
\begin{aligned}
\& 0 \times 0 \mathrm{~A} 8 \mathrm{C}=27.00 \mathrm{MHz} \\
\& 0 \times 2 \mathrm{DO}=720 \mathrm{dot} \\
\& 0 \times 8 \mathrm{~A}=138 \mathrm{dot} \\
\& 0 \times 1 \mathrm{E} 0=480 \mathrm{H} \\
\& 0 \times 2 \mathrm{D}=45 \mathrm{H} \\
\& 0 \times 10=16 \mathrm{dot} \\
\& 0 \times 3 \mathrm{E}=62 \mathrm{dot} \\
\& 0 \times 09=9 \mathrm{H} \\
\& 0 \times 06=6 \mathrm{H} \\
\& 0 \times 81=129 \mathrm{~mm} \\
\& 0 \times 60=96 \mathrm{~cm} \\
\& 0 \times 00=0 \mathrm{dot} \\
\& 0 \times 00=0 \mathrm{H} \\
\& 0 \mathrm{bO}=\text { non-Interlace } \\
\& 0 \mathrm{O} 0=\text { Normal display, no stereo } \\
\& 0 \times 3=\text { Digital Separate } \\
\& 0 \mathrm{O} 0=\text { Vertical Polarity negative } \\
\& 0 \mathrm{bO}=\text { Horizontal Polarity negative }
\end{aligned}
\] \\
\hline 59-48
\(37-36\)
\(3 A-38\)
\(3 D-3 B\)
\(41-3 E\)

$44-42$
45
46

47 \& | [Detailed Timing Descriptions \#2] |
| :--- |
| Pixel Clock |
| Horizontal Active Pixels |
| Horizontal Blanking Pixels |
| Vertical Acrive Lines |
| Vertical Blanking Lines |
| Horizontal sync offset |
| Horizontal sync pulse width |
| Vert sync offset |
| Vert sync pulse width |
| Horizontal Image Size |
| Vertical Image Size |
| Horizontal Border |
| Vertical Border |
| Interlace |
| Stereo Mode sync signal description1 |
| sync signal description2 | \& \[

$$
\begin{aligned}
& 0 \times 1 \mathrm{D} 01=74.25 \mathrm{MHz} \\
& 0 \times 780=1920 \mathrm{dot} \\
& 0 \times 118=280 \mathrm{dot} \\
& 0 \times 21 \mathrm{C}=540 \mathrm{H} \\
& 0 \times 16=22 \mathrm{H} \\
& 0 \times 58=88 \mathrm{dot} \\
& 0 \times 2 \mathrm{C}=44 \mathrm{dot} \\
& 0 \times 02=2 \mathrm{H} \\
& 0 \times 05=5 \mathrm{H} \\
& 0 \times 81=129 \mathrm{~mm} \\
& 0 \times 49=73 \mathrm{~cm} \\
& 0 \times 00=0 \mathrm{dot} \\
& 0 \times 00=0 \mathrm{H} \\
& 0 \mathrm{~b} 1=\text { Interlace } \\
& 0 \mathrm{b0}=\text { Normal display, no stereo } \\
& 0 \times 3=\text { Digital Separate } \\
& 0 \mathrm{b0}=\text { Vertical Polarity negative }
\end{aligned}
$$
\]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& sync signal description3 \& Ob0 = Horizontal Polarity negative \\
\hline \[
\begin{aligned}
\& 6 B-5 A \\
\& 5 B-5 A \\
\& 5 C \\
\& 5 D \\
\& 5 E \\
\& 6 B-5 F
\end{aligned}
\] \& \begin{tabular}{l}
[Monitor Descriptor Description \#1] FLAG \\
Reserved \\
Data Type Tag \\
Reserved \\
Monitor Name
\end{tabular} \& \[
\begin{aligned}
\& 0 \times 00=\text { Monitor Descriptor } \\
\& 0 \times 00 \\
\& 0 \times F C=\text { Monitor name, stored as ASCII } \\
\& 0 \times 00 \\
\& 0 \times 56412 \text { D31383039 = VA-1809 }
\end{aligned}
\] \\
\hline \[
\begin{array}{|l}
7 \mathrm{D}-6 \mathrm{C} \\
6 \mathrm{D}-6 \mathrm{C} \\
6 \mathrm{E} \\
6 \mathrm{~F} \\
70 \\
71 \\
72 \\
73 \\
74 \\
75 \\
76 \\
77 \\
7 \mathrm{D}-78
\end{array}
\] \& \begin{tabular}{l}
[Monitor Descriptor Description \#2] \\
FLAG \\
Reserved \\
Data Type Tag \\
Reserved \\
Min. Vertical rate \\
Max. Vertical rate \\
Min. Horizontal \\
Max. Horizontal \\
Max. Supported Pixel Clock \\
Secondary timing formula support
\end{tabular} \& \[
\begin{aligned}
\& 0 \times 00=\text { Monitor Descriptor } \\
\& 0 \times 00 \\
\& 0 \times F D=\text { Monitor range limits, binary coded } \\
\& 0 \times 00 \\
\& 0 \times 17=23 \mathrm{~Hz} \\
\& 0 \times 3 \mathrm{D}=61 \mathrm{~Hz} \\
\& 0 \times 0 \mathrm{~F}=15 \mathrm{kHz} \\
\& 0 \times 2 \mathrm{E}=46 \mathrm{kHz} \\
\& 0 \times 0 \mathrm{~F}=150 \mathrm{MHz} \\
\& 0 \times 00=\text { No secondary timing formula supported } \\
\& 0 \times 0 \mathrm{~A} \\
\& 0 \times 202020202020
\end{aligned}
\] \\
\hline 7E \& Extension FLAG \& \(0 \times 01=1\) \\
\hline 7F \& Check Sum \& 0x4C \\
\hline 80 \& Extended Block Type \& 0x02 = CEA861B \\
\hline 81 \& Revision Number \& 0x03 = ver. 3 \\
\hline 82 \& Detailed Timing Blocks start at Byte \& 0x20 \\
\hline 83 \& \begin{tabular}{l}
[DTV Monitor Support] \\
under scan \\
Basic Audio \\
YCbCr4:4:4 \\
YCbCr4:2:2 \\
total number of native formats
\end{tabular} \& \[
\begin{aligned}
\& 0 \times 71 \\
\& \text { Ob0 }=\text { not support } \\
\& \text { Ob1 }=\text { support } \\
\& \text { Ob1 }=\text { support } \\
\& \text { Ob1 }=\text { support } \\
\& \text { Ob1 }=1
\end{aligned}
\] \\
\hline 84
85
85
86
87
88
89
\(8 A\)
\(8 B\)
\(8 C\)
\(8 D\) \& \begin{tabular}{l}
[Video Short Description] \\
Tag Code \\
Length \\
Video Code/Native Format
\end{tabular} \& \[
\begin{aligned}
\& 0 \times 49 \\
\& 0 \times 02=\text { Video Short Descritpion } \\
\& 0 \times 09 \\
\& 0 \times 82=[2]=720 \times 480 \mathrm{p} / \text { Native Format } \\
\& 0 \times 05=[5]=1920 \times 1080 \mathrm{i} \\
\& 0 \times 04=[4]=1280 \times 720 \mathrm{p} \\
\& 0 \times 01=[1]=640 \times 480 \mathrm{p} \\
\& 0 \times 10=[16]=1920 \times 1080 \mathrm{p} \\
\& 0 \times 11=[17]=720 \times 576 \mathrm{p} \\
\& 0 \times 14=[20]=1920 \times 1080 \mathrm{i} \\
\& 0 \times 13=[19]=1280 \times 720 \mathrm{p} \\
\& 0 \times 1 \mathrm{~F}=[31]=1920 \times 1080 \mathrm{p}
\end{aligned}
\] \\
\hline 8 E
8 F

90 \& | [Audio Short Block Description1] |
| :--- |
| Tag Code |
| Length |
| Audio Format Code\#1 |
| Max Number of Audio\#1 |
| Supported Sampling Frequency\#1 | \& \[

$$
\begin{aligned}
& 0 \times 26 \\
& 0 \times 01=\text { Audio Short Block Descritption } \\
& 0 \times 06 \\
& 0 \times 0 \mathrm{~F} \\
& 0 \times 01=\text { Linier PCM } \\
& 0 \times 7=8 \mathrm{ch} \\
& 0 \times 1 \mathrm{~F}=32,44 \cdot 1,48,88 \cdot 2,96 \mathrm{kHz}
\end{aligned}
$$
\]

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline 91
92

93

94 \& | Supported Bit Size\#1 |
| :--- |
| Audio Format Code\#2 |
| Max Number of Audio\#2 |
| Supported Sampling Frequency\#2 |
| Supported Bit Size\#2 | \& \[

$$
\begin{aligned}
& 0 \times 07=16,20,24 \mathrm{bit} \\
& 0 \times 09 \\
& 0 \times 01=\text { Linier PCM } \\
& 0 \times 01=2 \mathrm{ch} \\
& 0 \times 7 \mathrm{~F}=32,44.1,48,88.2,96,176,192 \mathrm{kHz} \\
& 0 \times 07=16,20,24 \mathrm{bit}
\end{aligned}
$$
\]

\hline | 95 |
| :--- |
| 96 |
| 98-97 | \& | [Speaker Allocation Data Block] |
| :--- |
| Tag Code |
| Length |
| Speaker |
| Reserved | \& \[

$$
\begin{aligned}
& 0 \times 83 \\
& 0 \times 04=\text { Speaker Allocation Data Block } \\
& 0 \times 03 \\
& 0 \times 2 F==F L C / F R C, R L / R R, F C, L F E, F L / F R \\
& 0 \times 0000
\end{aligned}
$$
\]

\hline | 99 |
| :--- |
| 9C-9A |
| 9E-9D |
| 9F | \& | [Vendor Specific Data Block] |
| :--- |
| Tag Code |
| Length |
| 24-bit IEEE Registration Identifier |
| Physical Address |
| Support_AI | \& \[

$$
\begin{aligned}
& 0 \times 66 \\
& 0 \times 03=\text { Vendor Specific Data Block } \\
& 0 \times 06 \\
& 0 \times 000 \mathrm{C} 03 \\
& 0 \times 1000=1.0 .0 .0 \\
& 01 \mathrm{~b}=\text { Support }
\end{aligned}
$$
\]

\hline | A0 |
| :--- |
| A1-A0 |
| A4-A2 |
| A7-A5 |
| AB-A8 |
| AE-AC |
| AF |
| B0 |
| B1 | \& | [Detailed Timing Description 1] |
| :--- |
| Pixel Clock |
| Horizontal Active Pixels |
| Horizontal Blanking Pixels |
| Vertical Acrive Lines |
| Vertical Blanking Lines |
| Horizontal sync offset |
| Horizontal sync pulse width |
| Vert sync offset |
| Vert sync pulse width |
| Horizontal Image Size |
| Vertical Image Size |
| Horizontal Border |
| Vertical Border |
| Interlace |
| Stereo Mode |
| sync signal description1 |
| sync signal description2 |
| sync signal description3 | \& \[

$$
\begin{aligned}
& 0 \times 1 \mathrm{D} 01=74.25 \mathrm{MHz} \\
& 0 \times 500=1280 \mathrm{dot} \\
& 0 \times 172=370 \mathrm{dot} \\
& 0 \times 2 \mathrm{D} 0=720 \mathrm{H} \\
& 0 \times 1 \mathrm{E}=30 \mathrm{H} \\
& 0 \times 6 \mathrm{E}=110 \mathrm{dot} \\
& 0 \times 28=40 \mathrm{dot} \\
& 0 \times 5=5 \mathrm{H} \\
& 0 \times 5=5 \mathrm{H} \\
& 0 \times 81=129 \mathrm{~mm} \\
& 0 \times 49=73 \mathrm{~mm} \\
& 0 \times 00=0 \mathrm{dot} \\
& 0 \times 00=0 \mathrm{H} \\
& 0 \times 00=\text { non-Interlace } \\
& 0 \times 0=\text { Normal display, no stereo } \\
& 0 \times 3=\text { Digital Separate } \\
& 0 \times 1=\text { Vertical Polarity positive } \\
& 0 \times 01=\text { Horizontal Polarity positive } \\
& \hline
\end{aligned}
$$
\]

\hline $$
\begin{aligned}
& \mathrm{B} 3-\mathrm{B} 2 \\
& \mathrm{~B} 6-\mathrm{B} 4 \\
& \mathrm{~B} 9-\mathrm{B} 7 \\
& \\
& \\
& \text { C0-BA } \\
& \\
& \text { C1 } \\
& \text { C2 } \\
& \text { C3 }
\end{aligned}
$$ \& [Detailed Timing Description 2] Pixel Clock Horizontal Active Pixels Horizontal Blanking Pixels Vertical Acrive Lines Vertical Blanking Lines Horizontal sync offset Horizontal sync pulse width Vert sync offset Vert sync pulse width Horizontal Image Size Vertical Image Size Horizontal Border Vertical Border Interlace \& \[

$$
\begin{aligned}
& 0 \times 09 \mathrm{D} 6=25.18 \mathrm{MHz} \\
& 0 \times 280=640 \mathrm{dot} \\
& 0 \times A 0=160 \mathrm{dot} \\
& 0 \times 1 \mathrm{E} 0=480 \mathrm{H} \\
& 0 \times 2 \mathrm{D}=45 \mathrm{H} \\
& 0 \times 10=16 \mathrm{dot} \\
& 0 \times 60=96 \mathrm{dot} \\
& 0 \times 0 \mathrm{~A}=10 \mathrm{H} \\
& 0 \times 2=2 \mathrm{H} \\
& 0 \times 81=129 \mathrm{~mm} \\
& 0 \times 60=96 \mathrm{~mm} \\
& 0 \times 08=8 \mathrm{dot} \\
& 0 \times 08=8 \mathrm{H} \\
& 0 \times 00=\text { non-Interlace }
\end{aligned}
$$
\]

\hline
\end{tabular}

	Stereo Mode sync signal description1 sync signal description2 sync signal description3	$\begin{aligned} & 0 \times 0=\text { Normal display, no stereo } \\ & 0 \times 3=\text { Digital Separate } \\ & 0 \times 0=\text { Vertical Polarity negative } \\ & 0 \times 0=\text { Horizontal Polarity negative } \end{aligned}$
$\begin{aligned} & \mathrm{C} 5-\mathrm{C} 4 \\ & \mathrm{C} 8-\mathrm{C} 6 \end{aligned}$	[Detailed Timing Description 3]	
	Pixel Clock	$0 \times 0 \mathrm{ABC}=27.00 \mathrm{MHz}$
	Horizontal Active Pixels	0x2D0 $=720 \mathrm{dot}$
	Horizontal Blanking Pixels	$0 \times 90=144 \mathrm{dot}$
CB-C9	Vertical Acrive Lines	$0 \times 240=576 \mathrm{H}$
	Vertical Blanking Lines	$0 \times 31=49 \mathrm{H}$
CF-CC	Horizontal sync offset	$0 \times 0 \mathrm{C}=12 \mathrm{dot}$
	Horizontal sync pulse width	$0 \times 40=64 \mathrm{dot}$
	Vert sync offset	$0 \times 5=5 \mathrm{H}$
	Vert sync pulse width	$0 \times 5=5 \mathrm{H}$
D2-D0	Horizontal Image Size	$0 \times 81=129 \mathrm{~mm}$
	Vertical Image Size	$0 \times 60=96 \mathrm{~mm}$
D3	Horizontal Border	$0 \times 00=0 \mathrm{dot}$
D4	Vertical Border	$0 \times 00=0 \mathrm{H}$
D5	Interlace	$0 \times 0=$ non-Interlace
	Stereo Mode	$0 \times 0=$ Normal display, no stereo
	sync signal description1	$0 \times 3=$ Digital Separate
	sync signal description2	$0 \times 0=$ Vertical Polarity negative
		0x0 = Horizontal Polarity negative
	[Detailed Timing Description 4]	
D7-D6	Pixel Clock	0x1D01 $=74.25 \mathrm{MHz}$
DA-D8	Horizontal Active Pixels	$0 x 780=1920 \mathrm{dot}$
	Horizontal Blanking Pixels	$0 \times 2 \mathrm{D} 0=720 \mathrm{dot}$
DD-DB	Vertical Acrive Lines	$0 \times 21 \mathrm{C}=540 \mathrm{H}$
	Vertical Blanking Lines	$0 \times 16=22 \mathrm{H}$
E1-DE	Horizontal sync offset	0x210 $=528 \mathrm{dot}$
	Horizontal sync pulse width	$0 \times 2 \mathrm{C}=44 \mathrm{dot}$
	Vert sync offset	$0 \times 2=2 \mathrm{H}$
	Vert sync pulse width	$0 \times 5=5 \mathrm{H}$
E4-E2	Horizontal Image Size	$0 \times 81=129 \mathrm{~mm}$
	Vertical Image Size	$0 \times 49=73 \mathrm{~mm}$
E5	Horizontal Border	0x00 $=0 \mathrm{dot}$
E6	Vertical Border	$0 \times 00=0 \mathrm{H}$
E7	Interlace	0x1 = Interlace
	Stereo Mode	0x0 = Normal display, no stereo
	sync signal description1	$0 \times 3=$ Digital Separate
	sync signal description2	$0 \times 1=$ Vertical Polarity positive
	sync signal description3	0x1 = Horizontal Polarity positive
	[Detailed Timing Description 5]	
E9-E8	Pixel Clock	0x1D01 $=74.25 \mathrm{MHz}$
EC-EA	Horizontal Active Pixels	$0 \times 500=12800 \mathrm{dot}$
	Horizontal Blanking Pixels	$0 \times 2 \mathrm{BC}=700 \mathrm{dot}$
EF-ED	Vertical Acrive Lines	$0 \times 2 \mathrm{DO}=720 \mathrm{H}$
	Vertical Blanking Lines	$0 \times 1 \mathrm{E}=30 \mathrm{H}$
F3-F0	Horizontal sync offset	$0 \times 1 \mathrm{B8}=440 \mathrm{dot}$
	Horizontal sync pulse width	0x28 $=40$ dot

	Vert sync offset	$0 \times 5=5 \mathrm{H}$
F6-F4	Vert sync pulse width	Horizontal Image Size
	Vertical Image Size	$0 \times 5=5 \mathrm{H}$
F7	Horizontal Border	$0 \times 81=129 \mathrm{~mm}$
F8	Vertical Border	$0 \times 49=73 \mathrm{~mm}$
F9	Interlace	$0 \times 00=0 \mathrm{dot}$
	Stereo Mode	$0 \times 00=0 \mathrm{H}$
	sync signal description1	$0 \times 0=$ non-Interlace
	sync signal description2	$0 \times 0=$ Normal display, no stereo
	sync signal description3	$0 \times 3=$ Digital Separate
	Check sum	$0 \times 1=$ Vertical Polarity positive
	$0 \times 1=$ Horizontal Polarity positive	
FF	0×21	

8.1.2 SAMPLE2

(1) SINK
rx_mode=repeater hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	0D	OE	OF
00	00	FF	FF	FF	FF	FF	FF	00	06	8F	07	11	01	00	00	00
10	OC	OF	01	03	80	OC	09	78	OA	1E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8C	OA	D0	8A	20	E0	2D	10	10	3E
40	96	00	81	60	00	00	00	18	01	1D	80	18	71	1 C	16	20
50	58	2 C	25	00	81	49	00	00	00	9E	00	00	00	FC	00	56
60	41	2D	31	38	30	39	0A	20	20	20	20	20	00	00	00	FD
70	00	17	3D	OD	2E	OF	00	OA	20	20	20	20	20	20	01	4C
80	02	03	20	71	49	82	05	04	01	10	11	14	13	1F	26	OF
90	1F	07	09	7F	07	83	2F	00	00	66	03	OC	00	10	00	80
A0	01	1D	00	72	51	D0	1E	20	6E	28	55	00	81	49	00	00
B0	00	1E	D6	09	80	A0	20	E0	2D	10	10	60	A2	00	81	60
C0	00	08	08	18	8C	OA	D0	90	20	40	31	20	OC	40	55	00
D0	81	60	00	00	00	18	01	1D	80	D0	72	1C	16	20	10	2C
E0	25	80	81	49	00	00	00	9E	01	1D	00	BC	52	D0	1E	20
F0	B8	28	55	40	81	49	00	00	00	1E	00	00	00	00	00	21

8.1.3 SAMPLE3

(1) SINK

> rx_mode=receiver hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
00	00	FF	FF	FF	FF	FF	FF	00	06	8 F	07	11	01	00	00	00
10	0 C	0 F	01	03	80	0 C	09	78	0 A	1 E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8 C	0 A	$\mathrm{D0}$	8 A	20	E 0	2 D	10	10	3 E
40	96	00	81	60	00	00	00	18	D 6	09	80	A0	20	E	2 D	10
50	08	60	22	00	81	60	00	08	08	18	00	00	00	FC	00	56
60	41	2 D	31	38	30	39	0 A	20	20	20	20	20	00	00	00	FD
70	00	17	3 D	0 D	2 E	0 F	00	0 A	20	20	20	20	20	20	01	07
80	02	03	1 A	71	43	82	01	11	26	0 F	1 F	07	09	7 F	07	83
90	2 F	00	00	66	03	0 C	00	10	00	80	8 C	0 A	$\mathrm{D0}$	90	20	40
A0	31	20	0 C	40	55	00	81	60	00	00	00	18	00	00	00	00
B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	B7

8.1.4 SAMPLE4

(1) SINK
rx_mode=receiver hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
00	00	FF	FF	FF	FF	FF	FF	00	06	8 F	07	11	01	00	00	00
10	0 C	0 F	01	03	80	0 C	09	78	0 A	1 E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	01	1 D	80	18	71	1 C	16	20	58	2 C
40	25	00	81	49	00	00	00	9 E	01	1 D	00	72	51	DO	1 E	20
50	6 E	28	55	00	81	49	00	00	00	1 E	00	00	00	FC	00	56
60	41	2 D	31	38	30	39	0 A	20	20	20	20	20	00	00	00	FD
70	00	17	3 D	0 D	2 E	0 F	00	0 A	20	20	20	20	20	20	01	94
80	02	03	1 C	71	45	85	04	14	13	02	26	0 F	1 F	07	09	7 F
90	07	83	2 F	00	00	66	03	0 C	00	10	00	80	01	1 D	80	DO
A0	72	1 C	16	20	10	2 C	25	80	81	49	00	00	00	9 E	01	1 D
B0	00	BC	52	$\mathrm{D0}$	1 E	20	$\mathrm{B8}$	28	55	40	81	49	00	00	00	1 E
C0	8 C	0 A	$\mathrm{D0}$	8 A	20	E 0	2 D	10	10	3 E	96	00	81	60	00	00
D0	00	18	00	00	00	00	00	00	00	00	00	00	00	00	00	00
E 0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	BA

8.1.5 SAMPLE5

(1) SINK

> rx_mode=receiver hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	0D	OE	OF
00	00	FF	FF	FF	FF	FF	FF	00	06	8F	07	11	01	00	00	00
10	OC	OF	01	03	80	OC	09	78	OA	1E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8C	OA	D0	8A	20	E0	2D	10	10	3E
40	96	00	81	60	00	00	00	18	01	1D	80	18	71	1 C	16	20
50	58	2 C	25	00	81	49	00	00	00	9E	00	00	00	FC	00	56
60	41	2D	31	38	30	39	0A	20	20	20	20	20	00	00	00	FD
70	00	17	3D	OD	2E	OF	00	OA	20	20	20	20	20	20	01	4C
80	02	03	1D	71	49	82	05	04	01	10	11	14	13	1F	23	09
90	7F	07	83	01	00	00	66	03	OC	00	10	00	80	01	1D	00
A0	72	51	D0	1E	20	6E	28	55	00	81	49	00	00	00	1E	D6
B0	09	80	A0	20	E0	2D	10	10	60	A2	00	81	60	00	08	08
C0	18	8C	0A	D0	90	20	40	31	20	OC	40	55	00	81	60	00
D0	00	00	18	01	1D	80	D0	72	1C	16	20	10	2C	25	80	81
E0	49	00	00	00	9E	01	1D	00	BC	52	D0	1E	20	B8	28	55
F0	40	81	49	00	00	00	1E	00	00	00	00	00	00	00	00	8A

8.1.6 SAMPLE6

(1) SINK

rx_mode=receiver hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF
00	00	FF	FF	FF	FF	FF	FF	00	06	8F	07	11	01	00	00	00
10	OC	OF	01	03	80	OC	09	78	OA	1E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8C	OA	D0	8A	20	E0	2D	10	10	3E
40	96	00	81	60	00	00	00	18	01	1D	80	18	71	1 C	16	20
50	58	2 C	25	00	81	49	00	00	00	9E	00	00	00	FC	00	56
60	41	2D	31	38	30	39	OA	20	20	20	20	20	00	00	00	FD
70	00	17	3D	OD	2E	OF	00	0A	20	20	20	20	20	20	01	4 C
80	02	03	1D	71	49	82	05	04	01	10	11	14	13	F	23	OF
90	1F	07	83	$2 F$	00	00	66	03	OC	00	10	00	80	01	1D	00
A0	72	51	D0	1E	20	6E	28	55	00	81	49	00	00	00	1E	D6
B0	09	80	A0	20	E0	2D	10	10	60	A2	00	81	60	00	08	08
C0	18	8C	0A	D0	90	20	40	31	20	OC	40	55	00	81	60	00
D0	00	00	18	01	1D	80	D0	72	1C	16	20	10	2C	25	80	81
E0	49	00	00	00	9E	01	1D	00	BC	52	D0	1E	20	B8	28	55
F0	40	81	49	00	00	00	1E	00	00	00	00	00	00	00	00	B6

8.1.7 SAMPLE7

(1) SINK

> rx_mode=receiver hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
00	00	FF	FF	FF	FF	FF	FF	00	06	8 F	07	11	01	00	00	00
10	0 C	0 F	01	03	80	0 C	09	78	0 A	1 E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8 C	0 A	$\mathrm{D0}$	8 A	20	E 0	2 D	10	10	3 E
40	96	00	81	60	00	00	00	18	01	1 D	80	18	71	1 C	16	20
50	58	2 C	25	00	81	49	00	00	00	9 E	00	00	00	FC	00	56
60	41	2 D	31	38	30	39	0 A	20	20	20	20	20	00	00	00	FD
70	00	17	3 D	0 D	2 E	0 F	00	0 A	20	20	20	20	20	20	01	4 C
80	02	03	39	71	4 D	82	05	04	01	10	11	14	13	1 F	06	15
90	03	12	3 B	0 F	1 F	07	09	7 F	07	17	1 F	00	1 F	07	00	27
A0	07	00	2 F	07	02	37	1 F	02	3 F	7 F	02	47	7 F	02	83	2 F
B0	00	00	66	03	0 C	00	10	00	80	01	1 D	00	72	51	$\mathrm{D0}$	1 E
C0	20	6 E	28	55	00	81	49	00	00	00	1 E	$\mathrm{D6}$	09	80	A0	20
D0	E 0	2 D	10	10	60	A2	00	81	60	00	08	08	18	$8 C$	0 A	$\mathrm{D0}$
E0	90	20	40	31	20	$0 C$	40	55	00	81	60	00	00	00	18	01
F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	2 E

8.1.8 SAMPLE8

(1) SINK
rx_mode=repeater hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
00	00	FF	FF	FF	FF	FF	FF	00	06	8 F	07	11	01	00	00	00
10	0 C	0 F	01	03	80	0 C	09	78	0 A	1 E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8 C	0 A	$\mathrm{D0}$	8 A	20	E 0	2 D	10	10	3 E
40	96	00	81	60	00	00	00	18	01	1 D	80	18	71	1 C	16	20
50	58	2 C	25	00	81	49	00	00	00	9 E	00	00	00	FC	00	56
60	41	2 D	31	38	30	39	0 A	20	20	20	20	20	00	00	00	FD
70	00	17	3 D	0 D	2 E	0 F	00	0 A	20	20	20	20	20	20	01	4 C
80	02	03	39	71	4 D	82	05	04	01	10	11	14	13	1 F	06	15
90	03	12	3 B	0 F	1 F	07	09	60	07	17	1 F	00	1 F	07	00	27
A0	07	00	2 F	07	02	37	14	02	3 F	7 F	02	47	7 F	02	83	2 F
B0	00	00	66	03	0 C	00	10	00	80	01	1 D	00	72	51	$\mathrm{D0}$	1 E
C0	20	6 E	28	55	00	81	49	00	00	00	1 E	$\mathrm{D6}$	09	80	A0	20
D0	E 0	2 D	10	10	60	A2	00	81	60	00	08	08	18	$8 C$	0 A	$\mathrm{D0}$
E0	90	20	40	31	20	$0 C$	40	55	00	81	60	00	00	00	18	01
F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	2 E

8.1.9 SAMPLE9

(1) SINK

> rx_mode=receiver hdmi_mode=dvi hdcp_on=on ddc_speed=100

(2) EDID

	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
00	00	FF	FF	FF	FF	FF	FF	00	06	8 F	07	11	01	00	00	00
10	0 C	0 F	01	02	80	0 C	09	78	0 A	1 E	AC	98	59	56	85	28
20	29	52	57	FF	FF	80	81	40	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	30	2 A	00	98	51	00	2 A	40	30	70
40	13	00	51	0 E	11	00	00	1 E	00	00	00	FF	00	43	32	32
50	35	37	31	32	33	0 A	20	20	20	20	00	00	00	FD	00	$3 B$
60	3 D	1 F	40	0 B	00	0 A	20	20	20	20	20	20	00	00	00	FC
70	00	4 C	35	35	37	0 A	20	20	20	20	20	20	20	20	00	8 A

8.1.10 SAMPLE10

(1) SINK
rx_mode=receiver hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	0A	OB	OC	OD	OE	OF
00	00	FF	FF	FF	FF	FF	FF	00	06	8F	07	11	01	00	00	00
10	OC	OF	01	03	80	OC	09	78	0A	1E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8 C	OA	D0	8A	20	E0	2D	10	10	3E
40	96	00	81	60	00	00	00	18	01	1D	80	18	71	1C	16	20
50	58	2C	25	00	81	49	00	00	00	9E	00	00	00	FC	00	56
60	41	2D	31	38	30	39	OA	20	20	20	20	20	00	00	0	FD
70	00	17	3D	0D	2E	OF	00	OA	20	20	20	20	20	20	01	4
80	02	03	1F	71	49	82	05	04	01	10	11	14	13	1 F	26	OF
90	1F	07	09	7F	07	83	2 F	00	00	65	03	OC	00	10	00	01
A	1D	00	72	51	0	1E	20	6E	28	55	00	81	49	00	00	00
B0	1E	D6	09	80	A0	20	E0	2D	10	10	60	A2	00	81	60	00
C0	08	08	18	8C	OA	D0	90	20	40	31	20	OC	40	55	00	81
D0	60	00	00	00	18	01	1D	80	D0	72	1C	16	20	10	2 C	25
E0	80	81	49	00	00	00	9E	01	1D	00	BC	52	D0	1E	20	B8
F0	28	55	40	81	49	00	00	00	1E	00	00	00	00	00	00	A3

8.1.11 Compliance1

(1) SINK

rx_mode=receiver
hdmi_mode=dvi
hdcp_on=on
ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
00	00	FF	FF	FF	FF	FF	FF	00	06	8 F	07	11	01	00	00	00
10	0 C	0 F	01	02	80	0 C	09	78	0 A	1 E	AC	98	59	56	85	28
20	29	52	57	FF	FF	80	81	40	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	30	2 A	00	98	51	00	2 A	40	30	70
40	13	00	51	0 E	11	00	00	1 E	00	00	00	FF	00	43	32	32
50	35	37	31	32	33	0 A	20	20	20	20	00	00	00	FD	00	3 B
60	3 D	1 F	40	0 B	00	0 A	20	20	20	20	20	20	00	00	00	FC
70	00	4 C	35	35	37	0 A	20	20	20	20	20	20	20	20	00	8 A

8.1.12 Compliance2

(1) SINK
rx_mode=receiver hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
00	00	FF	FF	FF	FF	FF	FF	00	06	8 F	07	11	01	00	00	00
10	0 C	0 F	01	03	80	0 C	09	78	0 A	1 E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8 C	0 A	$\mathrm{D0}$	8 A	20	E 0	2 D	10	10	3 E
40	96	00	81	60	00	00	00	18	01	1 D	80	18	71	1 C	16	20
50	58	2 C	25	00	81	49	00	00	00	9 E	00	00	00	FC	00	56
60	41	2 D	31	38	30	39	0 A	20	20	20	20	20	00	00	00	FD
70	00	17	3 D	0 D	2 E	0 F	00	0 A	20	20	20	20	20	20	01	4 C
80	02	03	20	71	49	82	05	04	01	10	11	14	13	1 F	26	0 F
90	1 F	07	09	7 F	07	83	2 F	00	00	66	03	0 C	00	10	00	80
A0	01	1 D	00	72	51	$\mathrm{D0}$	1 E	20	6 E	28	55	00	81	49	00	00
B0	00	1 E	D 6	09	80	A0	20	E 0	2 D	10	10	60	A2	00	81	60
C0	00	08	08	18	8 C	0 A	$\mathrm{D0}$	90	20	40	31	20	$0 C$	40	55	00
D0	81	60	00	00	00	18	01	1 D	80	$\mathrm{D0}$	72	1 C	16	20	10	2 C
E 0	25	80	81	49	00	00	00	9 E	01	1 D	00	BC	52	$\mathrm{D0}$	1 E	20
F0	B8	28	55	40	81	49	00	00	00	1 E	00	00	00	00	00	21

8.1.13 Compliance3

(1) SINK

rx_mode=receiver hdmi_mode=hdmi
hdcp_on=on
ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF
00	00	FF	FF	FF	FF	FF	FF	00	06	8F	07	11	01	00	00	00
10	OC	OF	01	03	80	OC	09	78	0A	1E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8C	OA	D0	8A	20	E0	2D	10	10	3E
40	96	00	81	60	00	00	00	18	01	1D	00	72	51	D0	1E	20
50	6E	28	55	00	81	49	00	00	00	9E	00	00	00	FC	00	56
60	41	2D	31	38	30	39	OA	20	20	20	20	20	00	00	00	FD
70	00	17	3D	OD	2E	OF	00	0A	20	20	20	20	20	20	03	92
80	F0	02	02	00	00	00	00	00	00	00	00	00	00	00	00	00
90	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
A0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
CO	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	OC
100	02	03	36	71	4A	82	04	05	06	08	0A	OC	OE	10	23	3B
110	OF	1F	07	09	7F	07	17	1F	00	1F	07	00	27	07	00	2 F
120	07	02	37	17	02	3F	7F	02	47	7F	02	83	2F	00	00	66
130	03	OC	00	10	00	80	01	1D	80	18	71	1 C	16	20	58	2C
140	25	00	81	49	00	00	00	9E	8C	0A	A0	14	51	F0	16	00
150	26	7C	43	00	81	49	00	00	00	98	8C	0A	A0	14	51	F0
160	16	00	26	7C	43	00	81	60	00	00	00	18	18	15	40	28
170	B2	F0	16	00	4C	F8	43	00	81	49	00	00	00	98	00	A3
180	02	03	0F	71	4A	11	13	14	15	17	19	1B	1D	1F	25	8C
190	OA	D0	90	20	40	31	20	OC	40	55	00	81	60	00	00	00
1A0	18	01	1D	00	BC	52	D0	1E	20	B8	28	55	40	81	49	00
1B0	00	00	1E	01	1D	80	D0	72	1C	16	20	10	2C	25	80	81
1C0	49	00	00	00	9E	8C	0A	A0	20	51	20	18	10	18	7E	23
1D0	00	81	60	00	00	00	98	8C	OA	A0	20	51	20	18	10	18
1E0	7E	23	00	81	60	00	00	00	18	18	15	40	40	B2	20	18
1 1F	10	30	FC	23	00	81	60	00	00	00	98	00	00	00	00	B4

8.1.14 Compliance4

(1) SINK
rx_mode=receiver hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	OF
00	00	FF	FF	FF	FF	FF	FF	00	06	8F	07	11	01	00	00	00
10	OC	OF	01	03	80	OC	09	78	0A	1E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8C	OA	D0	8A	20	E0	2D	10	10	3E
40	96	00	81	60	00	00	00	18	01	1D	80	18	71	1C	16	20
50	58	2C	25	00	81	49	00	00	00	9E	00	00	00	FC	00	56
60	41	2D	31	38	30	39	OA	20	20	20	20	20	00	00	00	FD
70	00	17	3D	OD	2E	OF	00	OA	20	20	20	20	20	20	01	4C
80	02	03	20	41	49	82	05	04	01	10	11	14	13	1F	26	OF
90	1F	07	09	7F	07	83	2 F	00	00	66	03	OC	00	10	00	80
A0	01	1D	00	72	51	D0	1E	20	6E	28	55	00	81	49	00	00
B0	00	1E	D6	09	80	A0	20	E0	2D	10	10	60	A2	00	81	60
C0	00	08	08	18	8C	0A	D0	90	20	40	31	20	OC	40	55	00
D0	81	60	00	00	00	18	01	1D	80	D0	72	1 C	16	20	10	2C
E0	25	80	81	49	00	00	00	9E	01	1D	00	BC	52	D0	1E	20
F0	B8	28	55	40	81	49	00	00	00	1E	00	00	00	00	00	51

8.1.15 Compliance5

(1) SINK
rx_mode=receiver hdmi_mode=hdmi hdcp_on=on ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	OA	OB	OC	OD	OE	0F
00	00	FF	FF	FF	FF	FF	FF	00	06	8F	07	11	01	00	00	00
10	OC	OF	01	03	80	OC	09	78	OA	1E	AC	98	59	56	85	28
20	29	52	57	00	00	00	01	01	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	8C	OA	D0	8A	20	E0	2D	10	10	3E
40	96	00	81	60	00	00	00	18	01	1D	80	18	71	1C	16	20
50	58	2C	25	00	81	49	00	00	00	9E	00	00	00	FC	00	56
60	41	2D	31	38	30	39	OA	20	20	20	20	20	00	00	00	FD
70	00	17	3D	OD	2E	OF	00	OA	20	20	20	20	20	20	01	4C
80	02	03	20	71	49	82	05	04	01	10	11	14	13	1F	26	OF
90	1F	07	09	7F	07	83	2F	00	00	66	03	OC	00	10	00	80
A0	01	1D	00	72	51	D0	1E	20	6E	28	55	00	81	49	00	00
B0	00	1E	D6	09	80	A0	20	E0	2D	10	10	60	A2	00	81	60
C0	00	08	08	18	8C	OA	D0	90	20	40	31	20	OC	40	55	00
D0	81	60	00	00	00	18	01	1D	80	DO	72	1C	16	20	10	2C
E0	25	80	81	49	00	00	00	9E	01	1D	00	BC	52	D0	1E	20
F0	B8	28	55	40	81	49	00	00	00	1E	00	00	00	00	00	21

8.1.16 Compliance6

(1) SINK

rx_mode=receiver
hdmi_mode=dvi
hdcp_on=on
ddc_speed=100
(2) EDID

	00	01	02	03	04	05	06	07	08	09	$0 A$	$0 B$	$0 C$	$0 D$	0 E	0 F
00	00	FF	FF	FF	FF	FF	FF	00	06	8 F	07	11	01	00	00	00
10	0 C	0 F	01	02	80	0 C	09	78	0 A	1 E	AC	98	59	56	85	28
20	29	52	57	FF	FF	80	81	40	01	01	01	01	01	01	01	01
30	01	01	01	01	01	01	30	2 A	00	98	51	00	2 A	40	30	70
40	13	00	51	0 E	11	00	00	1 E	00	00	00	FF	00	43	32	32
50	35	37	31	32	33	0 A	20	20	20	20	00	00	00	FD	00	3 B
60	3 D	1 F	40	0 B	00	0 A	20	20	20	20	20	20	00	00	00	FC
70	00	4 C	35	35	37	0 A	20	20	20	20	20	20	20	20	00	8 A

8.2. Connector pin layouts

8.2.1. HDMI connector

Pin assignment

Connector pin No.	Input/output signal
1	TMDS DATA2+
2	TMDS DATA2 SHIELD
3	TMDS DATA2-
4	TMDS DATA1+
5	TMDS DATA1 SHIELD
6	TMDS DATA1-
7	TMDS DATA0+
8	TMDS DATA0 SHIELD
9	TMDS DATA0-
10	TMDS CLK SHIELD
11	CEC
12	RESERVE
13	DDC CLK
14	DDC DATA
15	GROUND (for +5 V)
16	+5 V POWER
17	HOT PLUG DETECT
18	FG
19	Shell

8.2.2. RS-232C connector (D-sub 9 pins, male)

Pin layout
Pin assignment

Pin No.	I/O	Signal
1	-	NC
2	O	TXD (send data)
3	I	RXD (receive data)
4	-	Shorted with pin \#6
5	-	FG (frame ground)
6	-	Shorted with pin \#4
7	I	CTS (clear to send)
8	O	RTS (request to send)
9	-	NC

8.2.3. D-SUB connector

Pin layout
Pin assignment

Pin No.	Signal	Pin No.	Signal
1	R	9	NC
2	G	10	GND
3	B	11	GND
4	NC	12	NC
5	NC	13	HS
6	GND (R)	14	VS
7	GND (G)	15	NC
8	GND (B)		

8.3. VA-1809 specifications

8.3.1. Specification

Item			Specification
Restrictions on timing signals (ver.1.1)	Pixel Clock		25 to 150MHz
	Measurement pixel unit		2-pixel increments
	Color space		RGB / YCbCr 444, 422
	Input/output signals		TMDS
	HDCP		Transmission, reception enabled: Reception Ver.1.1 Transmission Ver 1.0
	HDMI		Ver 1.2 (SACD is not supported.)
	Repeater function		Available (Up to 12 units)
	Generator function		Not available * Signals cannot be output without HDMI input signals.
	Restrictions on LCD output	H Total Pixels	200 to 2500Pixels But Hsync + H Back Porch \geq H period - 2048 when H Period > 2144 pixels.
		H Active Pixels	128 to 2000 Pixels
		H Blanking Pixels	138 Pixels or more
		\checkmark Total Lines	200 to 2000 Lines
		\checkmark Active Lines	128 to 1320 Lines
		V Sync Lines	4 to 500 Lines
		V Back Porch Lines	1 to (1/2 \times V Total Lines) Lines
	Restrictions on HDMI input/output signals	H Total Pixels	128 to 8195 Pixels
		H Active Pixels	128 to 4095 Pixels
		H Blanking Pixels	138 Pixels or more
		\checkmark Total Lines	200 to 4095 Lines
		\checkmark Active Lines	128 to 2047 Lines
		V Sync Lines	4 to 2047 Lines
		V Back Porch Lines	1 to (1/2 \times V Total Lines) Lines
Audio output	Signal format		SPDIF (COAX) output
	Sampling frequency		Max. $192 \mathrm{kHz}, 2$ channels ($96 \mathrm{kHz}, 8$ channels)
DDC			DDC2B supported
E-EDID			Ver.1.3
CEA EDID Timing Extension			Ver. 3
$\begin{aligned} & \text { EDIDROM } \\ & \text { size } \end{aligned}$	When power is OFF		256byte (non-rewritable)
	When power is ON		2kbyte
VGA output			D-Sub 15 pins, XGA
LCD output			XGA

8.3.2. Ratings

Item	Rating
Supply voltage	AC100 to $120 \mathrm{~V}, \mathrm{AC} 200$ to 240 V
Power line frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
Power consumption	50 VA MAX
Dimensions	$210(\mathrm{~W}) \times 168(\mathrm{H}) \times 380(\mathrm{D}) \mathrm{mm}$ (excluding protrusions)
Weight	Approx. 5.0 kg
Operating temperature	+5 to $40^{\circ} \mathrm{C}$
Storage temperature	-10 to $60^{\circ} \mathrm{C}$
Humidity	30 to $85 \% \mathrm{RH}$ (no condensation)

8.3.3. Restrictions

- If the sink data of the VA-1809 is used by setting it to receiver (monitor), no signal is output from the HDMI output and COAX output.
- If the sink data of the VA-1809 is used by setting it to DVI, audio input/output is disabled.
- If HDMI or DVI video is input in HDCP, the VGA output cannot be used.
- If HDMI audio is input in HDCP, the COAX output cannot be used.
- If a unit is not connected to the HDMI output even though the sink data of the VA-1809 is set in the repeater, the receiver is used to execute (only for HDCP).
- If the sink data of the VA-1809 is set in the repeater and a unit that does not support HDCP is connected to the HDMI output, the execution of HDCP cannot be performed normally. (The sequence cannot be advanced due to a DDC line ACK error on the HDMI output side.)
- If a monitor without a physical address is connected to output, the physical address of the VA-1809 main unit does not change.
- If the sink data of the VA-1809 is set in the repeater, up to 12 connections can be used.

NOTICE

- An incorrectly collated manual or a manual with missing pages will be replaced.
- All copyrights pertaining to this product are the property of ASTRODESIGN.
- This manual may not be copied in whole or in part without written permission.
- The contents of this manual are subject to change without prior notice due to improvements.
- The manufacturer will not be liable for any effects caused by incorrect operation.
- All inquiries concerning this product should be addressed to your dealer or to the manufacturer at the contact numbers given below.
- The products and product names mentioned in this manual are the trademarks and registered trademarks of the companies concerned.

T0077B

[^0]: * For details on the SPD InfoFrame errors, refer to "7.1.3 SPD InfoFrame" on page 176.

[^1]: * For details on the MPEG InfoFrame errors, refer to "7.1.5 MPEG InfoFrame" on page 178.

[^2]: * The definitions of the upstream and downstream viewed from the VA-1809 are as follows.

[^3]: * By pressing DETAIL \rightarrow Rotary Key AVI InfoFrame, detailed information can be confirmed.

[^4]: * By pressing DETAIL \rightarrow Rotary Key AVI InfoFrame, detailed information can be confirmed.

[^5]: * If the EDID is set to "HDMI supported," "PASS" is displayed.

[^6]: * Refer to "7.1.15 Compliance Test Item Check" (p180) for details of Compliance Test.

